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Abstract— The focus of this paper is on spatial precoding in
correlated multi-antenna channels where the number of data
streams is adapted independent of the number of transmit
antennas. Towards the goal of a low-complexity implementain,
a statistical semiunitary precoder is studied where the preoder
matrix evolves fairly slowly with respect to the channel evution.
While prior work on statistical precoding has focussed on
information-theoretic limits, most of these computationsresult in
complicated functional dependencies of the mutual informtion
with the channel statistics that do not explicitly reveal the impact
of statistics on performance. In contrast, estimates that @
directly in terms of the channel statistics are obtained hee for
the relative mutual information loss of a semiunitary precaler
with respect to a perfect channel information benchmark. Baed
on these estimates, matching metrics are developed that dajpe
the degree of matching of a channel to the precoder structure
continuously and allow ordering two matrix channels in terms of
their mutual information performance. While these metrics are

subset M, of the transmit dimensiofV,. Initial works on pre-
coding study optimal signaling strategies when perfechok
state information (CSI) is available at the transmitter &mel
receiver. These studies show thatrennel diagonalizingnput

that corresponds to exciting the dominahf-dimensional
eigen-space of the channel, with a power allocation that can
be computed via waterfilling, is robust under different dasi
metrics [1]-[10].

Although perfect CSI provides a benchmark on the perfor-
mance, it is difficult to obtain in practice. More importantl
the system performance is not robust under CSI uncertainty.
Small perturbations in the channel entries could result in
large perturbations in a singular vector of the channel & th
discernibility of the corresponding singular value dinsimes.
Furthermore, even if perfect CSl is available, tight coaistis

based on bounds, numerical studies are used to show that theon complexity as well as energy consumption [11]-[13], [14,

proposed metrics capture the performance trade-offs accuately.
The main conclusion of this work is a simple-to-state fundarantal
principle in the context of signaling design for single-useMIMO
systems: the best channel for the statistical precoder is th
channel that is matched to it.

Index Terms— Adaptive coding, correlated channels, low-
complexity signaling, MIMO systems, multimode signalingsemi-
unitary precoding, spatial precoding.

I. INTRODUCTION

Multiple antenna communications has received S|gn|f|cau
attention over the last decade as a mechanism to increas

the rate of information transfer, or the reliability of san
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Chap. 5] at the RF level in the mobile ends may disallow
the implementation of optimal solutions in practice. Thss i
because Third Generation wireless systems and beyond are
expected to be multi-carrier in nature and the burden of
computing the optimal input is magnified by the number of
sub-carriers and the rate of evolution of the channel raaliz
tions. Besides this, the structure of the input could change
often dramatically, at the rate of evolution of the channel
realizations, which also makes it difficult to implement.€Ek
reasons suggest that a slower rate of adaptation of the input
iﬁnals, that is of low complexity and is more robust to CSI
certainty, is preferred in practice.
fh realistic wireless systems, where the channels arecspati

: L temporally correlated, the slow rate of statistical eviolut
reception, or a combination of the two. The focus of thi

work is on point-to-point spatial precoding systems whéee t
number of independent data-streams is constrained to bgtgt

plies that it is reasonable to assume perfect statistical
knowledge of the channel at the transmitter. Since the apati
istics experienced by the individual sub-carriersideati-

cal [15], [16], the burden of computing the optimal input fwit
only the statistical information at the transmitter is eglent

to that of a narrowband system. Even in this setting, optimal
precoding has been studied for different spatial cormtati
models [16]-[27]. These works show that the eigen-direstio

of the optimal input covariance matrix correspond to a set
of the M-dominant eigenvectors of the transmit covariance
matrix and are hence, easily adaptable to change in statis-
tics. However, computing the power allocation across Me
modes requires Monte Carlo averaging or gradient descent-
type iterative approaches [22]-[25]. While the computadio
complexity of the power allocation algorithm may be afford-
able at the base station end, whether it is possible or not at
the mobile end is questionable.

Many of the above works have also leveraged tools



from asymptotic random matrix theory and made significafdrthest to the perfect CSI precoder, respectively. WHile t
progress in characterizing the information-theoreticitbmin  matching metrics have been defined based on bounds and
correlated MIMO channels. However, most of them rely on thtbese bounds have only been established under certairabpeci
implicit characterization of the limiting eigenvalue dibution assumptions (antenna asymptotics and I5ljiR), we provide
of random matrices (given by the Stieltjes transformationaumerical studies to show that the matching metrics capture
formula [28], [29]) and obtain fixed-point equations whidnc the performance trade-offs accurately for 8NRs and even
be solved at any fixe@NR to produce asymptotic capacitysmall antenna numbers.
formulas; see [22]-[25], [29], [30] and references therein Despite the growing importance of statistical (semiuitar
While this approach is valid in the antenna asymptotics f@recoding in wireless standardization efforts, a compmsive
any fixedSNR, insights on the impact of the channel statisticstudy of the performance limits of statistical precoding is
(the transmit and receive covariance matrices) on cap&itylacking in the literature and the channel-to-precoder hiate
rendered difficult due to the complicated nature of the fixe@rinciple established here provides some intuition on vyyze
point equations. of precoder is best suited to a specific channel statistics.
With this background in mind, we restrict our theoreticaDrganization: After elucidating the system model in Sec-
attention to the mutual information performance of a class tion 1l, we benchmark the structure of the optimal precoder
statisticalsemiunitary precoders where the eigen-directions ofvith perfect CSI and only statistical knowledge at the trans
the input correspond to the dominant eigenvectors of threstramitter in Section 1ll. We also motivate the need to study
mit covariance matrix and the power allocation is unifornstatistical semiunitary precoding in this section. In &ettV
Our focus here is on two questions: 1) can the performanged the appendices, using tools from random matrix theady an
of a semiunitary precoder be captured as a function of te&genvector perturbation theory, we study the asymptatic (
channel statisticransparently in contrast to existing implicit antenna dimensions) performance of a statistical seraiynit
characterizations?, 2) when is the semiunitary precodar-neprecoder. We discuss the implications of our results and
optimal with respect to a perfect CSI benchmark and whiiustrate them numerically in Section V. Concluding refsar
is the “gap? in performance in terms of the system and thare provided in Section VI.
channel parameters? Notation: The M-dimensional identity matrix is denoted by
Towards answering these questions, we use tools frdmy. The i, j-th andi-th diagonal entries of a matriX are
asymptotic random matrix theory to bound the relative ayeradenoted byX(i, j) and X (i), respectively. In more compli-
loss in mutual information between the perfect CSl andsttati cated settings (for example, when the maiXixs represented
cal semiunitary precoders. These boundgramsparentand in  as a product or sum of many matrices), the above entries are
terms of the eigenvalues of the transmit and receive cavegia denoted byX;; andX;, respectively. The complex conjugate,
matrices. Motivated by these bounds, we introduce the notieonjugate transpose, and inverse operations are denoted by
of matching metricsthat abstractly capture the degree of)*, (-), and(-)~! while the expectation, the trace and the
channel-to-precoder matching. On one extreme is a peyfediieterminant operators are given By-|, Tr(-) anddet(-), re-
matched channel where: 1) the-dominant eigenvalues of spectively. The standard big-O®) and little-oh ¢) notations
the transmit covariance matrix aveell-conditioned whereas are used along with the decreasing ordering for eigenvalues
the remaining N; — M) eigenvalues arél-conditionedaway O0f ann x n Hermitian matrixX: A\y(X) > -+ > A, (X).
from the dominant ones, and 2) the receive covariance matfiRe largest and the smallest eigenvalues are also denoted by
is alsowell-conditioned On the other extreme is a perfectlyAmax(X) and Amin(X), respectively. The notation* stands
mismatched channel where both the transmit and recef@ max(z,0). All logarithms are to base unless mentioned
covariance matrices are ill-conditioned with the addigibon otherwise.
constraint thatank(H) > M with probability 1.
Our work establishes the following simple-to-state funda- [1. SYSTEM SETUP

mental principle, akin to existing source-channel matghin \we consider a communication system with transmit and
paradigms, in the context of signaling design for singlerusM_ receive antennas whe (1 < M < N,) independent
MIMO systems. While there exists no metric for ordering twejata-streams are used in signaling. That is, thelimensional
matrices [31], multi-antenna channel matrices can be etlef,hyt vectors is precoded into anV,-dimensional vector via
continuously with respect to their average mutual infoiomat e N, x M precoding matrixF and transmitted over the

performance with a semiunitary precoder of a fixed rank usiR@annel. With a transmit power constraint gfthe discrete-
the matching metrics. In particular, the two extreme casgge paseband signal model used is

of channels (as above) correspond to the setting where the
mutual information of the semiunitary precoder is closest a y = /% HFs+n (1)

AN Ny x M matrix X with M < N is said to be semiunitary if it wherey is the N,-dimensional received vectd is the N, x

satisfiesXZ X = I,,. . . . ) ) .
2This gap can possibly be bridged withlimited feedbackscheme that N;-dimensional channel matrix, andis the N,-dimensional

provides partial channel information to the transmitter. (zero mean, unit variance) additive white Gaussian noike. T
%It A¢(1) > - > Aq(M) denote the firsi/ eigenvalues of the transmit most general decomposition of the precoder is

covariance matrix and% is (or is not) significantly larger tham, we 1/2

loosely say that these eigenvalues are ill-(or well-)ctioded. F=VrA{ U? (2)



where Vg is Ny x M semiunitary,Ag is an M x M non- whereH;q is an i.i.d. channel matrix and the correlation of
negative definite power shaping (allocation) matrix, &jgl the channel entries is in the form of a Kronecker product of
is M x M unitary. Under the assumption thathas i.i.d. the transmit and receive covariance matrices. Even thdugh t
components with zero mean and unit variance, the transm@parable model may be an accurate fit under certain channel
power constraint is met witir(Ag) < M. conditions, deficiencies acquired by the separability proyp
Channel Model: In this work, we make the reasonable asresult in misleading estimates of system performance [
sumption that the receiver has perfect CSI. The main emphasiaders are referred to [26], [32] for more details on how the
here is on the impact of transmitter knowledge of statistiggeneral (non-separable) version of the canonical model fits
of the channel process on performance. We assume a blovkasured data better.
fading, narrowband model for the time-frequency correlati Receiver Architecture: Under these assumptions, the optimal
of H and focus on the spatial correlation. It is well-known thatception strategy corresponds to non-linear maximum:- like
Rayleigh fading (zero mean complex Gaussian) is an accurkit@od (ML) decoding. However, the exponential complexity
model for H in a non line-of-sight setting and hence, thef ML decoding in both antenna dimensions and coherence
complete spatial statistics are described by the secomer-orlength implies that simpler receiver architectures arégpred.
moments of{H(, j)}. In this work, we assume a linear minimum mean-squared error
The most general, mathematically tractable spatial carre(MMSE) receiver. With this receiver, the symbol correspond-
tion model is acanonical decompositidrof the channel along ing to the k-th data-stream is recovered by projecting the
the transmit and receive covariance bases [24], [26], [B2]. received signajy on to theN, x 1 vector
this model, we assume that the auto- and cross-covariance .
matrices of all rows ofl have the same unitary eigen-basis g = L2 (ﬁHFFHHH n INT) Hf, (11)
(denoted byU,), and the auto- and cross-covariance matrices M AM
of all the columns ofH have the same unitary eigen-basisihere f;, is the k-th column of F. That is, the recovered
(U,). Thus, we can decompod# as symbol iss(k) = gy, and the mean-squared error of this
H=U, H,, Uff 3) recovery processVISEy, is given by

. . . —1
where H;,4 has independent, but not necessarily identically MSE;, = [(IIVI + ﬁFHHHHF) ] ) (12)
distributed entries. The transmit and receive covariana&im M k
ces are defined as

I1l. PRELIMINARIES

>, £ EF[HPH] = U, E[HLH, 4| UZ = U,A,UT  (4) _ _ _
o H Hovei H We first summarize known results on optimal precoder
¥, = E[HH"] = U, EHindHjpo] U;" = U, A, U7 (5) design in this section before proceeding onto the focusief th

where A, = E[HH, H;,4] and A, = E[Hi,¢H,] are diago- paper.
nal. Note that the eigenvalues of the transmit covariandexna  The metric of interest in this work is the mutual information

are between the input and output symbols since it captures both
N, the achievable rate as well as reliability performance unde

{nglw k=1, ,Nt} (6) a concatenated inner and outer code design [34] (where soft

i=1 decisions are allowed at the decoder of the inner code). tUnde

(i, 7). Given a corre- the assumption that the input symbols are Gaussian, theamutu

wherec?; denotes the variance ;4 . : Al
information at arSNR (of p) is given as

lated chénnel, we will assume thaf < rank(A;) < N;. We

will also assume that the columns Hf,,4 are arranged in the N P HyrH

decreasing order of transmit eigenvalues. ’ I(s;y) = logdet (IM + MF H HF) ' (13)
Under certain conditions, the model in (3) reduces tQcan be seen that maximizing the mutual information in (13)

some well-known spatial correlation models such as the: i.ican be formulated as the minimization of a Schur-concave

model, the separable correlation [33] and the virtual regme fynction: the determinant of the mean-squared error mggfix

tation [15], [23] frameworks. For example, in the separablsyfect CSI Case: A unified convex programming framework

case, under the normalization that for precoder optimization in the perfect CSI case, sumnedriz
Tr(A¢) = Tr(Ar) = pe = NNy, (7) in the following lemma, is proposed in [9] by studying two
_ ) broad classes of functions: Schur-concave and Schur-gonve
we can writeH;.q for the normalized channel as functions.
H- - .x2H, »1/2 8  LemmaliLet f:RM — R be a function such thaf(-)
Ve " is monotonically increasing in its arguments. That is, het t
1 1/2 1/2 1-H univariate functionf(--- , zx,---) : R — R be monotonically
— H~ N Ur A2 Hig A, U ©) increasing for allk. If MSE = [MSE; --- MSE/]| and f(-)
1 12 1/2 is Schur-concave over its domain, thg(MSE) is minimized
= Hina = N A Hig Ay (10) by Fyerr whose singular value decomposition (SVD) is given
as

4This model is referred to as the “eigen-beam or beamspaceliriod32] 1/2
and is used in capacity analysis in [24]. Fperf = [Vl te VM] ’ Aperf' (14)



On the other hand, iff(-) is Schur-convexf(MSE) is mini- input is adapted in response to the statistical information
mized by which evolves slowly compared with the channel realizatjon
is of importance. In this setting, the following lemma caless
1z p (15) - : ol
the mutual information maximization problem.

for an appropriate choice of unitary matrx (see [9] for its ~ Lemma 3:Let H be described by the statistical model
construction). In both cases, the diagonal entries\gf are 1N (3) with the eigenvalues ok, arranged in the decreasing

Fperf = [vl ‘e VM] . Aperf .

obtained via waterfilling and we assume a SVD Hras order. LetHinq denote theN, x M principal sub-matrix of
s H;,.4. The optimal precoder that maximizes the average mutual
H= UHAH/ Vii, Va=[vi vy, (16) information is of the form
and the singular values are arranged in decreasing order. Feiat = Vitat Aslt/j (19)

Specific instantiations of the above lemma have been studied ) ] )
in the cases of average mean-squared error of the datf1eré Vst is @ set of M-dominant eigenvectors ok
streams [1][4], weighted average of mean-squared erribveof anq A.Stat is the unique solution to the following constrained
data-streams [5], [6], determinant of the mean-squareat erPPtimization problem:
E"I't""ter:’:oﬂa ?:tg]ml”l‘g]”t under a peak-power constraintg8Hl -, . max Fyy [mg det (IN,,. + ﬁ H g AH{;’d)} (20)
Lemma 2:Using the ideas of [9] and [31], Lemma 1 canyith £ denoting the convex set of all diagoral x M non-
be straightforwardly extended to the case of perfect Cﬁégative definite matriceA such thafTr(A) < M. n
semiunitary precoding, wher&r in (2) is constrained to be The gptimality of the dominant eigenvectors B, is not
Ap = Iy If f(-) is Schur-concave over its domain, theryrprising; see [17]-[20], [22]-[25] and references tirefer
f(MSE) is minimized by problems of a similar nature. The optimization in (20) is
(17) standard: maximizing a concave function over a convex set.
A gradient descent-type approach for this is provided i [27
On the other hand, if (-) is Schur-convexf(MSE) is mini- and Monte Carlo approaches are provided in [23], [24].
mized by Statistical Semiunitary Precoder: While Lemma 3 establishes
F o . T (18) the benchmark in the statistical case, computational caings
perf, semi = [V1 *+* V] (as in the perfect CSI case) of Monte Caigoadient descent
for an appropriate choice of unitary matix (same as in the approaches could often make the computatiomgt. hard,
perfect CSI case). In fact, Lemma 1 can be extended to tii¢10t impossible. This motivates studying a low-complgxit
case whereAg is fixed (but is different froml,;) by using alternative ofstatistical semiunitary precoding
the notion of weak super-majorization from [31]. The detail F vV 21)
are not provided here. [ ] stat, semi stat
Statistical Case: Following Lemmas 1 and 2, since the eigenwhereV.. corresponds to the optimal choice of eigen-modes
modes of the optimal input are a function of the CSI, perfofrom Lemma 3.
mance degradation with respect to CSI error is directiteela  Let I, and e, semi denote the mutual information (ran-
to singular vector perturbations of the channel matrix. M/li  dom variables) achievable WitB e and Fytat, semi, respec-
is true that a small perturbation in the matrix entries caly ontively. The main goal of this paper is to compare the per-
lead to a small perturbation in the singular values, a sm#&irmance of a statistical semiunitary precoder with respec
entry-wise perturbation can result inlarge perturbation of its perfect CSI benchmark. In particular, we would like to
the singular vectors depending on the condition number @§timateA L., defined as,
the true channel matrix [35, p. 202-203], [36], [37]. See, fo

Fperf7 semi — [Vl VM]-

A EH [Iperf - Istat, semi]

example, [38], [39], [40, Figs. 6 and 7] etc. that illustrate Alemi = T . (22)
MIMO settings where losses equivalent to2a dB SNR 1 [Lstat, semi]
penalty occur due to lack of perfect CSI. The reason for considering a normalized quantity in (22) in

On the other hand, it may not be possible to adapt tltentrast t0 By [Iperr — Istat, semi] iS the following. For any
precoder structure to the channel optimally even if perfesignaling scheme, the mutual information tends to zero as
CSl is available since RF design is often the fundamental— 0 and tends to infinity ap — oco. Thus, the difference
bottleneck for realizing MIMO systems in practice [14, Chapn mutual information between two schemes can converge to
5]. This may be because: 1) the eigenspace of the optimat ingero asp — 0 at a rate different from that of either scheme,
could change dramatically from one channel realizatiorhéo tand/or could blow up to infinity ag — oo. In this setting,
next, andor 2) the efficient utilization of CSI is constraineda more meaningful metric would be the relative difference in
by fundamental limits on energy per bit constraints at thmutual information between these schemes.
computational or processing level [11]-[14]. For example, It is clear that Al is a complicated function of the
the move towards multi-carrier signaling and the fast raNR, channel statistics and antenna dimensions, and a gen-
at which channel realizations evolve leads to computatiorexal closed-form expression seems hard. To simplify furthe
limits on how many SVD operations can be afforded. Thesmalysis, we will assume that tlNR as well as the antenna
reasons suggest that statistical precoding where the abptimdimensions are large. In particular, we will assume that



p > a% for some suitableaw > 1. With respect to order. For any fixed value gf and under the assumption of
asymptotics of antenna dimensions, four cases arise based%e — 0, Al is bounded as

the correlation structure in (3) and how antenna dimensions

go to infinity: i) separable correlation wit%{ — 0 or oo, ii) Zf\;(Ar(i))Q M
non-separable correlation with- — 0 or oo, iii) separable Aly < Ky - N S a1t 2 AL
correlation withNL{ — v € (0,00), and iv) non-separable 2i=1 Ar(i) 2= log (14 7 Ar(0)
correlation withNMT — v € (0,00). The first two cases denotewhere ; is a constant determined from an application of
the setting ofelative antenna asymptoticehere one antennaLemma 6 (in App. A).

(25)

dimension increases to infinity relative to the other. Trst la Proof: See Appendix C. [ ]
two correspond to the case where antenna dimensions grovAim seen from Appendix CAIl, is a function of only
proportion A (AHE A, Hiq) and)y (AtHi{{,ATH“d). Since\(AB) =
A(BA), Theorem 1 can be easily modified even whign—
PRECODING We now consider the non-separable case With— 0.
. . Theorem 2:Let H be described by the general model
The differenceA Ieemi in (22) can be expanded as in (3) and leto? denote the variance dfling(i,) with the

assumption that
o EH [Iperf - Iperf, semi] P
AIsemi —

Ep |1 mi Ne 52
b star, semi] 2is1% —O(1) forall j=1,---, M. (26)
All Nr
Bt [Tpert, semi — stat, semi] (23) There exists a constart determined from an application of
B [Istat, semi] Lemma 6 (in App. A) such that

Al

AL, < Nt M pN7
where Ioerf, semi denotes the mutual information achievable 2=y Z:I M+pY, 0%
j= )

With Foerf, semi- Since the argument within the expectation of 1

the numerator ofAI; is not explicitly dependent on the spatial " =37 (27)
correlation model, it is straightforward to obtain a bouod f Sy log (147 -3, 0%)
Al in the highSNR regime. -

Proposition 1: Let Au(M) = )‘M(HH_H) denote theM-  The proof of Theorem 2 follows along the approach of
th largest squared singular value Hf as in (16). Ifp is sUCh  Thegrem 1 via the generalized asymptotic eigenvalue charac
thatp > aEn {%} for somea > 1, Al is bounded as terization in Lemma 6. Observe thAtl, in both (25) and (27)

converges to zero &SNR increases a§og(§—NR). In terms of
1 2 the asymptotic trend as antenna dimensions increase, since
En [(AH(M)) ]

AL < 2M . (24) > Ar(i) = pe = N¢N,, the typical behavior ofA,.(i) is
"= 2B Lo, sem] ( B [ ) D2 A.(i) = O(Ny), which implies that
H | Aa (M)
Proof: See Appendix B. [ | D (A()? = O(Ni/N,)
Intuitively, as a and hence th&NR increases, the water- i

filling power allocation of the perfect CSI scheme converges ng,, (A (i))2 N
to uniform power allocation across the modes (see [22], — ‘;l—r -0 ( t ) . (28)
[23], [25], etc.) and thusAI; decreases. The bound provided Doy Ar(i) VN

in (24) is not tight since we have not characterized the ex
probability Pr(ng < M) (in App. B) that determines\/;.
But the above bound is sufficient to capture the performance

loss with uniform power allocation. Characterization&f;, B. Special Case: Beamforming
which is explicitly dependent on the spatial correlationd®io
is non-trivial. In the following section, we provide estitea
of Al for different correlation models and regimes.

3hich is essentially the same trend as (27).

We now pay attention to the beamforming cadé & 1),
the low-complexity of which makes it an attractive signglin
choice in many wireless standards. While tBHR regime
where beamforming is capacity-optimal has been estalulishe
in prior work [22], [23], [25], [41], the performance gap
between statistical and perfect CSI beamforming is lesar.cle
We start with the simplest case of separable correlation.Using tools from eigenvector perturbation theory, introei
Theorem 1:Let the channeH be described by the normal-in [40], we establish the following result.
ized separable model as in (8)-(10). Let the column®g§ First, note that the term\I; is redundant in the beamform-
be ordered such that the eigenvaluesAgfare in decreasing ing case. Letl s and Ii.: denote the mutual information

A. Relative Antenna Asymptotics



achievable by beamforming with perfect CSl and statistical Proposition 3: Let the channel be characterized by the non-

information alone, respectively. Define the loss term separable model Witlﬂ% — yandy € (0,00). Letd >
Frt [Doert — Tutat] 0 be a constant (apprbpriately small). Then, the following
Al & ZH perf — ostat] (29) approximation to an upper bound dfI, holds with high
B Lsear] probability (which converges td asd — 0):
The following discussion complements recent work on the
performance gap with the separable model [42], that has been AL < AI7® (35)
established by exploiting some recent advances in random ma Nye 1M S(M—1)N,
trix theory. Unlike [42] which is based on exact random matri ~ log (5°) + 77 L= log (1 TR ) . (36)
theory results and is applicable pnly f@hit [Ipert — Istat] IN log (Nje) + % log (H;V; At(i))
the separable case, we generalize the results to the general
canonical modeling framework, but do not consider fine re- Proof: See Appendix F. ]
finement of constants in the following result for the sake d#ince
brevity. ) )
Proposition 2: In the regime wherelt — 0, Al can be Z A (i) = ZAt(Z) = pe = NeNp, (37)
bounded as ' i i
Al < rige - N;\} log%\fr) g 1 . (30) the typical behavior of7 s, «x and G, i IS
rNeolog (14 pNy) O(Gar.ve) = O(Gar. ) = O(N) = O(N,.). (38)
where ks is a constant that depends only on the eigenvalues
of X; andX,. Thus, typically, both (33) and (36) are symmetric with
Proof: See Appendix D. ] 1
Note that the trend ofA7, in (30) is similar to that of (25) AL >'°="" 0 <7) and (39)
and (27) in terms ofSNR behavior, whereas in terms of log(SNR)
trend as antenna dimensions increase, we are able to leveragn r, {M,N:, N»-}—o00 ( 1 ) - ( 1 ) . (40)
eigenvector perturbation theory to obtain a tighter bound, log(IV) log(N:)

contrast with the earlier discussion. Also, note that while (33) and (36) are asymmetric in the sens

that (33) is a function oG/, x Whereas (36) is not. This
C. Proportional Growth of Antenna Dimensions is a deficiency of the approximation technique in the most

We now consider the more complicated asymptotic settiﬁ&”eral case and not of the trend exhibited by the tightest
where{M, N,} — oo with 2L — v and~ € (0, ). hound possible fon\/;. _

Theorem 3:Let the channelH be characterized by the Comparing the bounds between the relative antenna asymp-
normalized separable model. Also, ldt 2 M:¥- — (1 totic and the proportional growth settings, the only difiece
and B 2 o — O(1). Let Gy« denote the geometric 1S thatAl> = O(1/v/N,) in the former case, whereasl, =
means of the statistical eigenvalués, defined as, O(1/1og(N,)) in the latter case. This difference arises as

a consequence of the fundamental difference in asymptotic

M /M M 1/M spectral properties in the two cases.
GZ\/I, tx = H At(l) ) GM, rx = HAI(Z) . (31)
=1

i=1

_ ) V. DiscussiON ANDNUMERICAL STUDIES
If p=a- x5 for somea > 1 and X is defined as _ _ _
‘ We now use the bounds established in Section IV to develop

vVAB -vVAB + 4« a heuristic on the structure & that is ‘best’ or ‘worst’ for a

21— . . . .
X =1 2 ’ (32) given precoding scheme. For this, we fregzeto be a fixed
Al is bounded as matrix so as t_o develop an understanding of the structure of
A; that minimizes the bounds tA I ;.
AL, < log (e/M) + k3 (33) Given that a constrainf ™, A, (i) = p. has to be met, the
log(p/epe) +10g (Gt 1 Gar,ex - X) common performance loss-minimiziny, (if it exists) is the
in{A;(1), A,.(1 i ing si imization:
bs =+ log (mln{ +(1), Ay ( )}) (34) solution to the following simultaneous optimization
GIVI,tx : GM, rx * X

M
V\{heremg is a constant dependent only on the antenna dimen- max {Zlog (1 + %At(i)) , Gu, tx} , and
sions. i=1

Proof: See Appendix E. [ | . M 5
In the general case of non-separable correlation, bounding min q A¢(1), Zlog <1+ At(i)> (41)
Al is difficult due to the lack of a fundamental random i=1

matrix theory of spectral properties of random matricesiwifor some s, > 0. The above objectives are equivalent to
independent entries. As a result, unlike the earlier cases, minimizing A1, in each of the four cases studied in Sec. IV.
have to resort to approximations fé/5. While these objectives are in general unrelated, SAR



and antenna dimensions increase, the four problems canwesl-conditioned. A channel that is ill-conditioned on bdhe

incorporated into the following optimization:

M Ny
maxHAt(i) subject to ZAt(z‘) = pe. (42)
=1 =1
The solution to the above problem is
A1) =+ = Au(M) = 22, (43)

On the other extreme, the worst choice&f that minimizes
Hf\il A.(i) and hence, maximizes the upper boundMA.;
is of the form:

Ai(1) ~ p. and A (i) =0, i > 2, (45)

but with the additional constraint thatnk(A;) > M. It
is important to note that the largest §ajs not achieved

transmit and the receive sides such thatk(H) > M (with
probability 1) is said to be a perfectlynismatched channel

An interesting consequence of the study in Theorems 1
and 2 is that channel hardening, that occursVasincreases,
results in the vanishing ofAl..,;. That is, statistical infor-
mation is as good as perfect CSl in the receive antenna
asymptotics.This behavior is peculiar of this asymptotic
regime, as documented in the beamforming case [38], [40],
[42]. The highSNR characterization for signaling witid/
spatial modes{ > a%M) for somea > 1) has also been
identified in prior work f41]. Our results can also be extehde
to the case of relative average error probability enhanoéme
with the semiunitary precoder. However, these details ate n
provided here.
Numerical Studies: We now illustrate the results established
so far via numerical studies.

when rank(A;) = 1. Motivated by the above discussion, it

is worthwhile defining amatching metric for the transmitter
side

M
M, 2 T Adi), (46)
1=1

worst channels. While\; is defined following Sec. IV where
bounds toAI.; are obtained, we hope that A4, increases,
the channel becomes more matched on the transmitter side
the performance losA I, decreases andce versa
Capturing the impact ofA,. on performance loss in the
general setting is difficult sincA.. is hidden in the first-order

analysis of Sec. IV. Nevertheless, in one special case, (25

suggests that anatching metric for the receiver sidmn be
defined as
N,
M, AN (AL3))2.

1

| 47)

Note that since" ", A,.(i) = p., M, is minimized by
_pe

A,
N,

Iy, (48)

and maximized by
A (1) = p. and A,(i) = 0,1 > 2, (49)

but with the added constraint thaink(A,) > M. It can

be seen that the performance loss is not maximized when

rank(A,) < M. As before, M, is defined following bounds

to Al.m and the notion of matching has to be understood

within this fundamental constraint.

To summarize the above discussion, we refer to a channel

that is perfectly matched on both the transmitter and t
receiver sides as a perfectlyatched channelnd this structure

is optimal (as per the bounds established) for the given

precoder structure (fixed choice 8f). The structure of this
channel is such that: 1) the rank &f is M with the dominant
transmit eigenvalues being well-conditioned, and\2)is also

SIn fact, if rank(A¢) = 1, the statistical precoder achieves the same

throughput as the optimal precoder.

2

- Mont‘e Carlo, Nr =4
- - -Bound, Nr:4
—o— Monte Carlo, Nr =8
——Bound, Nr =8
—e— Monte Carlo, Nr =16

—s— Bound, Nr =16
—a— Monte Carlo, Nr =32|
‘‘‘‘‘‘‘ —+—Bound, N =32

an

4t

25

Fig. 1. Comparison of Monte Carlo estimates Af ., with the bounds
established in Theorem 1.

Conservatism of the Bounds: While Sec. IV has estab-
lished bounds forAl..,; under certain assumptions, it
is important to understand as to how conservative these
bounds are and whether they capture the underlying trade-
offs accurately in the low to mediurBNR regime and
with reasonable antenna numbers. Fig. 1 compares the
exactAlmi, obtained via Monte Carlo averaging, with
the bounds in Theorem 1 for the separable case with
Ny = 4, M = 2 and N, = 4,8,16 and 32. We plot
log(ALemi) Vs. p and while Fig. 1 shows that the bounds
are loose (due to the lack of tight random matrix theoretic
estimates) especially in the lo8NR regime with small
antenna numbers, they get tight in the regime where the
theoretical results have been established. Nevertheless,
the following study addresses the question of whether the
intuition obtained via these bounds is useful in practice
or not.

o Performance Gap as a Function of M,: In contrast to
bounds onA ., the focus here is on the performance
gap between the perfect CSI and statistical precoders
with the exactAL.mi. We consided x 4 channels with

he



M = 2 and freezeU,; and U, to some fixed choice 1’
in our study. We also freezd, to A, = 41, so as

to maintainp. = NN, = 16 and to focus on the
impact of matching on the transmitter side. Note that the
matching metricM; = H;iwzl A.(k), takes values in the 7
range(0, 64] in our setting. A family of~1700 channels
(each characterized uniquely By, (k), k= 1,---, Ny) g
is generated such th@,iv;l Ai(k) = p. = 16 and M,

takes values over its range. The channels become mor¢ |
matched (on the transmitter side) to the precoder structure
as M, increases.

semi

— p=8dB
—— p=14dB

0.25 —+— p=20dB

0.2

Fig. 3. Performance loss with the statistical semiunitargcpder for fixed
Nt = 4, M = 2 as N, increases.

o1 practice. Motivated and inspired by many recent wireless-st
dardization efforts, we studied the performance of statikt
semiunitary precoding in this paper. Here, the eigen-modes
of the precoder are chosen to be the dominant eigenvectors
of the transmit covariance matrix whereas the power allo-
. ‘ ‘ ‘ ‘ ‘ ‘ R cation across the excited modes is uniform. We analytically
characterized the relative average mutual informatios lufs

the semiunitary precoder using tools from random matrix and

Fig. 2. Gap in mutual information performance betweendsiatil and perfect eigenvector perturbation theories.
CSI semiunitary precoding as a function of the matching imet;. Our results show that given a precoder architecture (that
is, fixed antenna dimensions and precoder rank), the relativ
While much of our study has been based on asymptotiifference metric is minimized by a channel that is matcleed t
random matrix theory, Fig. 2 illustrates that the notioit. A matched channel is one that has: 1) the same number of
of matched channels developed here is useful evendominant transmit eigen-modes as the precoder rank, and 2)
practically relevant regimes like x 4 channels. Fig 2 the dominant transmit as well as the receive eigen-modés tha
shows that the exachI,.mi decreases asf; increases are well-conditioned. Our theoretical study also charémts
for three choices op. Note that for a given channel as matching metricghat enable the comparison of two channels
increasesAl.m; decreases as/ log(p). It is important with respect to performance loss captured by the relative
to note that while there exists no ordering relationshigifference metric. In particular, as the channel becomesemo
between any two matrix channels [31], when the focusatched to the precoder structure and the matching metric
is only on the mutual information performance{; (and changes accordinglgontinuously the performance loss de-
M.) are sufficient to order channels. creases monotonically arndce versa As a by-product of our
o Asymptotic Optimality: The next study illustrates thecomputations, we also showed that the semiunitary precoder
asymptotic optimality of statistical precoding. Fig. 38lo is near-optimal in the relative antenna asymptotic setforg
the exactA Iiem; as a function ofV,. with Ny andM fixed any channel. This result generalizes previous work [4@] [4
at N; = 4 and M = 2. The channels have a separablen the beamforming casé{ = 1) where the performance of
correlation structure wittA, = I, whereasA,, = &1Ly, the statistical beamforming scheme has been studied.

which results inp. = 4 for all the channels. As can \yhile prior works on statistical precoding exist, ours ie th
be seen from the study in the previous section, chanfgk; attempt to transparently characterize the performanc
hardening, where the eigenvectorsif'H converge t0 terms of the channel statistics. Much of this study has been
the eigenvectors oF; = E[H”H] as §* — 0, ensures rendered feasible due to substantial advances in capturing
that even statistical information is sufficient for nearg,e eigen-properties of random matrices with independent
perfect CSI performance &, increases. entries. Nevertheless, there exist many directions alomighw
this work can be developed. We now list a few of these
directions. This work is limited to the higbN\R, large antenna
asymptotic regime where a comprehensive random matrix
The main focus of this work is on precoding for spatiallgheory is available to capture precoder performance [28)]. [
correlated multi-antenna channels that are often encoethie Even in this regime, it may be possible to refine the constants

Less Matched ~ M[ - More Matched

VI. CONCLUDING REMARKS



in the bounds for the relative loss terms and obtain further particular, with probability one, we have

insights on the impact of spatial correlation on perfornganc P Amin (XXH)

loss. The notion of precoder-channel matching introduced i 1 — 2\/7 < lim inf “22

this work can be developed further to aid in the design of o

low-complexity, structured and adaptive signaling scheme < thUPM <1+ 2\/5. (55)
In the case of mismatched channels, the construction of n n n

limited feedback schemes to bridge the gap in performanicet A be ann x n positive definite diagonal matrix. Under
has been undertaken in recent work [39]. The question thle same assumptions & p, n as above, there exists a finite
trade-offs between spatial versus spatio-temporal piegodconstanty; > 0 (dependent o andn only throughA) such
and extensions to more general Ricean fading, multi-usérat, with probabilityl

wideband systems are also of interest. A N (XAXH
i ( ) fyl\/E < lnnme
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n the other hand, 1eX be ap x n complex random matrix
with independent entries from a fixed probability space such
thatX(i, j) is zero mean, has varianeg; and

APPENDIX supmaxEHX(z DY < 72 < oo (57)
n,p

Also, without loss of generality, assume tr{aE?:1 afj} are

grranged in decreasing order. Then there exists a finitdains

> 0 (independent op, n) such that, for alk
Lemma 4:This lemma provides bounds for eigenvalues o¥ ( P b m)

A. Key Mathematical Results

We now introduce some key mathematical results fro
matrix theory that will be needed in the ensuing proofs.

sums and products of Hermitian matrices [43]AlfandB are ZJ 1 0123 S \/5 < liminf i (XXH)
n x n Hermitian matrices, for ang¢ =1, --- , n, we have n 3 n n
_ H "2
Ae(A)Auin(B) < A(AB) < Au(A)Anax(B),  (50) gmmm&“X>SZF”@+%¢E(%)
n n n n

Ak (A) + Anin(B) < Ap(A 4+ B) < Ap(A) + Anax(B).
(51) with probability 1.

Proof: We provide an elementary proof of the claim

u Whenp is finite, n — oo and X(i,j) are standard, complex
Lemma 5:This lemma extends the previous one to thgg,ssian. Define the set

complex case [31, p. 253-255]. L&t be ann x n complex I
matrix with {R;, C;} defined as A, & {w : Amax(X (wT)LAX(w) ) >14e + 62} . (99)
R, = Z|A(i’j)|’ Cj = Z'A(i’m’ i,j=1,---,n. If we can show that)  Pr(4,) < oo, it follows from

the Borel-Cantelli lemma [44] thaPr (limsup A,,) = 0. By
(52) choosinge; ande; appropriately (as a function of), we can
establish strict bounds on the eigenvalues.
Breaking XAX* into a diagonal component and an off-
agonal component and using Lemma 4, it follows via a union

Let the eigenvalues oA be arranged in a decreasing order
AM(A)] > - > |)\,L( )|, and Iet{Rl, C;} be rearranged di

such thatRpy) > -+ > Ry, andCjyy > -+ > (Y. Then, we bound that
nave m(X(L )2 1) A
; ok PM&JSM%<EL10<,U|) @>>q>
[T 1A < min { TT B, T Cia }- (53) n
=t =1 =l " OX(1,1)A®)X(2,0)*
. +ng1~<|2,:1 ( ,ZT)L (1)X(2,4)*| >€2>' (60)

. Lemme 6:Let X be ap x n complex ra.”dom matrrx. V\."th Using a Chernoff-type bound [44], we have the following:
i.i.d. entries of mean zero, common variancend a finite )

fourth moment. Consider _two cases: i)s fin_ite andn - Pr(A,) < pexp (_ nﬁ”2 2)
oo, and 2){p,n} — oo with p/n — 0. In either case, in 230 (A1)

the asymptotics of, the empirical eigenvalue distribution of ) e2n’c
XX —nl, h babili h + 2p exp T A2 (61)
Sy - converges pointwise with probabilityto the semi- S (A(d))
circular law F'(z) where for somec > 0. The smallest value of; ande, that can still
if 7 < —1, result inPr (limsup A4,,) = 0 is such that
F(z) = y771 7T\/l —y2dy if —1<z<1, (54) S (A())?

1
if 2> 1. €1 =0(e2) = - a1 0. (62)
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Lettingn | 0, we have B. Proof of Proposition 1

' Amax(XAXH) To characterize the behavior &/, recall the structure of
lim sup — Fperf andFperf, semi from Lemmas 1 and 2. Using these facts,
n . m . we have
21:1 A7) Zi:l A(i)? 1 )
< B + 74 YT (63) nH
AL - Bt s, semi] = Bt | Tog (14 Aua(i)Aue(0))
where~, > 0 is a constant independent of and n. The i=1

expression fol\yin(-) is symmetric with that of\,.x () and

can be obtained similarly. The extension to the case where — B Zlog( + - AH( )) (67)

X has only independent entries (not necessarily complex

Gaussian) also proceeds via the same logic. . o { N
Sincep — oo in Case 2), the above technique is not usefl\Jthere given a channel realizatiod, {Am(i), i =

in establishing the claim of the lemma. Here, the resulbfei 1,---, NV; > are the squared singular valuesKf ng modes

from [45], [28, Theorem 2.9, p. 623]. The generalizationthwi of the channel are eintedl(g ng < M) with power

A and independent entries follow via the same proof technque NS 1 and the water levels is chosen
as in [45] and hence no proofs are provided. The readers ar ef( )= (= ()) iz

referred to [28] for a brief summary of the general techmquéUCh that) Xy Awi(i) = p. It can be easily checked that
A () can be ertten as

[ ]
Stochastic Approximation for Random Determinants. In ' P 1 2= 1
the case of anV x N matrix Hjq4, stochastic properties of Awe(i) = e > AnG)  Au() (68)
det(H;qHZ) can be studied using tHgartlett decomposition j=1

(or bidiagonalization) of a sample covariance matrix [48]], andny satisfies
which states that there exist independent random variahles

on some probability space such that nH = arg max k s.t.

a(t) — Au(k)
An()Ank) =7

Hence, as stated in the bottom of the page, we have a bound
Z; ~ Z [Hiig (i, 7)]° ~ 1 2(2(N —i+1)) (65) OnAl.lIn the second inequality, we have used the fact that
2 log(1+ z) < z for all x > —1. The following simplifications

follow routinely:
where x?(2k) is a central chi-squared random variable with

2k degrees of freedom. In the non-i.i.d. case, performing this Al - Ex [Istat semi] — Ew [M — ng]

1<k<M, Z (69)

Z 2 det(Hi HEY) ~HZ“ (64)
=1

task is difficult as an equivalent decomposition is not known (5 Au(i)
Nevertheless, a tight stochastic approximation for theloam < By 1 I Au() M _ (72)
determinant is still possible. T\ 1+ %HI(” 1+ ’JATH(”
Lemma 7 (Girko):Let H;,4 be anN,. x M random matrix - .
with N, > M and independent entries that are distributed as ~ _ P M Z o 1 (73)
CN(O, o7;). There existindependent random varialfles i = - nu = pAu(j) 1+ /H\TH(Z')
, M on some probability space such thiat (HZ,H;,q) S
can be well-approximated as _ gy | M ;S )] (74)
~ ng = \ pAu(i) 1+ pAu()
i [Hina(k, ) P "
det (FI{%;Hia) HZu Zi~ i N, OO M o+ oA () (5 1) (75)
Proof: See [47, Chap. 2, p. 104] and [48, p. 35, 39] "= pAm(D) (1+ ’JATH())
for a version of the above statement on random determinant M
approximation. The justifications for the approximatiore ar < — - En Z A ] (76)
found in [26, Lemma 5]. [ | H(

ny pAH(i)(IIVVI[nH) 14 Ag (i) Zf}fl - 1
AII : EH [Istat7 semi] S EH Z IOg 1+ - o = n() (70)

Mg pAw () (M—ngs) An(i)
EH ZH: HnHM H — 1+ :;IH ZJ 1AH() (71)
1+ ﬂAJ\I}('L)

i=1

IN




From (69), it is easily recognized thaty > k if
k
1
k) ; An(i)

(77)

} for somea > 1 as in the

11

If + <1, we have

—log(l —xz) =log (1 + %)
<log(1+ (14 2x)) <log(1l + 2x), (86)

and this in combination with the Iog—inequality results in

statement of the theorem, both the terms in the expansion

of B [Istat, semi] iN (76) can be bounded by constants th
depend onIy on the channel statistics. For this note that,

M Moo
SMP{mmm‘;Awf”> 79
1 1
SM'PY(AH(M)>OLE{AH(M)]> (80)
(2) % u(M) (81)

S 27T T
(# [zt ))
where (a) follows from Chebyshev’s inequality. A trivial pgr

bound for the other term gives the desired result. ]

C. Proof of Theorem 1

It can be checked that the numerataf, of A, can be
written as

N =FEn

M
Z log (
k=1

- i [log (1+

where ﬁiid is the N; x M principal sub-matrix ofH;4 and
A; is the M x M principal sub-matrix ofA;. An application
of Lemma 4 shows that

pA(k)

M
Zlog (1 +
k=1 Mpe

let[t[(j?)\min ( I,dA Hl,d))] . (83)

Following an application of Lemma 6, we have

N < Zl ( phil) (1 o Yl P
log<1+M<1’y’ )) (84)

2.i(Ar(1))?
M
where v and +" follow from the corresponding bounds in

(AtHfﬂArHiid)ﬂ

M (AHfA, Hd)):| (82)

N < Fn

Amax (HiGA, Hiq) ) 1

— Fy [1og (1 +

2 Ar(d)

Lemma 6. After some straightforward simplifications, wedav

M

pA+(k) Zz(A”(l))Q
N<;1°g <1+M+pAt(k>' S A ) )
M -
v pA(k)  V2i(A(D))? Pe
_ kz::llog <1 T oA . S0 ) . (85)

at 87)

\/ PAt
< 2
N <(v+27) Z e
ZZ-(AT(i))2
> Ar(i)
A lower bound to the denominator tertlyy [/stat, semi], CaN be
obtained via the same logic and combining these two bounds

<(y+2y)-M- (88)

result in the statement of the theorem. ]
D. Proof of Proposition 2
We have the following well-known facts:
[perf = log (1 + p)\l) (89)
N
Iise = log <1 + pz )\k|kaustat|2) (90)
k=1

where \; = Apax(HH), ug,: is an eigenvector corre-
sponding to the dominant eigenvalue Bf and an eigen-
decomposition o 17 H is of the form:

Nt
HYH =Y Nvivi.

(91)
k=1
The following simplifications can be made:
Al - By [Lseat) < Ba[log(1 + pA1)]
— By [1og(1 + p)\1|v,€{ustat|2)} (92)

EH[log(l + P)\1|V£Iustat|2)}
> E[log(l +pA1(1=0)) - x (|v,€{ustat|2 >1-— 6)] (93)

W g [1og (1+ pAi(1 — 5))]& (v ugeae|? > 1 - 5) (94)

® _ SnNp
> E{loga oA (1— 5))] : (1 — 92N;e Nt—l) (95)
where the bounds are optimized over the choicedofa)
follows from the independence between singular values and
singular vectors of random matrices with independent en-
tries [29], [47], [48], (b) follows from the distortion bodn
computed in [40, Theorem 1] via eigenvector perturbation
theory, andk is a constant that depends only on the eigenvalues
of 3; andX,.. We thus have,

(96)

Upon applying Jensen’s inequality and noting tfgt[A\;] <
= N;N,, we have

p)\15
1+ p>\1(1 — 5)
5k Ny
+2N;-e Me-1 . By [ perf]

Al - By Istat] < En [log (1 +

EH [Iperf] § IOg(]- + pNtNr>; (97)
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which when used with the choice combining both of which results in the quadratic inequality

N, p? 2 2p -
6= |loa(2N:) +log (log (1 4+ pNeN.) | (98) FAt<M>A,-<M>(uu) = (5P ANA) +1) - i
results in + A(M)A (M) < 0. (108)
o log (1 + 2 ) I % ) 1ogﬁi¥5\7ﬂv . ) It ;s 2straightforward to check2that
e Bt [Istat] ' B Ad(M)AL(M) - i > 2 A(M)AL(M) + 1
In the regime where{t — 0, both the terms in the above Ip
equation are on the same order and thus, we have - E - A(M)A-(M) +1. (109)
N; - log(N, ; _ NN, _ _ M
Al - P L] < og(Nr) , (100) Letting A and B denoteA = %= and B = g, and
N, noting that both ar& (1) according to the assumption of the
wherer; is an appropriate condition number-dependent qualh€0rem, elementary computation shows that
tity. Using (95) with the choice ob in (98) followed by P VAB - /AB ¥ 4«
an application of Lemma 6 leads to the statement of the p_““ 21- 2% (110)
roposition.
Propost with p =« - A (M) Combining these facts, we have
VAB-AB +14
E. Proof of Theorem 3 Bt [Tt semi] = Mlog <1 _ \2/ Q@
As in App. C, we can writeAl, as @
M
: p
1 + AIQ _ EH[Iperf7 seml] (101) + Zlog (6 (kj)A,(k})) . (111)
EH[Istat semi] k=1 Pe
By [Zk | log (1 + L2 Ak(HHH))} Proceeding in the same way, one can obtain an upper bound for
= . (102) Eu[lpert, semi]. Since the main goal here is to obtain the trends
Fu {Zkzl log (1 + M%Ak(AtH,,dA H..d))} of AI,, we find it convenient and less cumbersérteereplace

the upper bound with an approximatidng(1 + ) ~ log(x))
The denominator of (102) can be computed following thgy ignoring the term that decays ds Thus, we have
method in [30, Theorem 1] and equals P
EH [Iperf,semi] ~ MlOg (_)

M

EH [Istat, seml 10g (1 + — MAt (k?)) M
; pe + Bu Z (Ak A, H"“))] (112)
Pe
+Zlo <1+— (k))p—M i, (103) (a)
& Al P < Miog (L) + min(4, B) (113)
wherep and i@ satisfy the recursive equations H . M
M M fy q A= MEH |:10g ( max(H”dAand> >:| + Z log (At
_ i i Ari(lf) (104) Pe = (114)
Vi 1+iﬁA,t(k)’ i
; H
B=MEu [log (Am”(H“dAtH“d) ﬂ + ) log (A (k)
m = 1 pC
Vi Z 1+Z uAt k) (105) =

(115)

A simple lower bound forEs [ Isiat, semi] iS Obtained by using where in (a) we have used Lemma 4. Combining (111)
the facts thatog(1 + x) > log(z) for = > 0 and 2 < 1 and (113), we have

resulting in log (e/M) + K3

Al 116
M 10g(p/6) +log (X/pe) +log (G, 1 - G, ) (116)
Lstat, se zz: 2 k3 = min< By [1og ()\IIlaX(Hf{jA—‘I‘Hiid))} ,
We now establish that the above bound is order-optimal as
increases (Wlﬂ’p = aA ) by lower bounding.z:. For this, By [log ()\mx( oA H ”dm
note that ,a >0 |s monotomcally increasing i and
hence, ~1og (G v) — log (Gar.n) — log(X) (117)
A, (M) > Ay(M) (207) 6The approximation can be made precise, but we will not botir this

w2 1+ uA (M)’ F=17 ﬁ,uA,:(]W)7 technicality here.



where X and G, are as defined in the statement of the

theorem. Noting that [28]

AIIlaX(Hﬁ-{jHiid)
N,

for some appropriate constaRit that only depends o, and

N,, we have the statement of the theorem. [ |

(1]

lim sup <K (118)

(2]

(3]
F. Proof of Proposition 3 [4]

We first apply Lemma 5 witlA = H H;,4, n = N; and
k = M to bound the product of eigenvalues Af, resulting
in:

(5]

M M
[Tr L W < ] cu (119) 16l
=1 i=1
where [7]
Ci 3y [Hina(k, )2
Ny Ny 8]
M| Hina (k. ) Eg (k. )|
+ N (120) [
J=1, j#i r

Using the law of large numbers, we know that the first term
converges toA;,—Ef) whereas each of the terms in the secorld®
sum is small with high probability. More precisely, for eyer

6 > 0, there exists am > 0 such that [11]

C; < Ay(i) + (M — 1)N, with prob. > 1 — (M — 1)e. [12]
(121)
Thus, we have [13]
EH [Iperf7 semi] [14]
- p [15]
= By Y log (1 + MAk(HindH{fd)) (122)
k=1 [16]
(@) Py &
o . HqH
< Mlog (M) +3 log (\e(HingHEL)) (123)

k=1

®) (L) +2M:1og (Al +e(M = 1)N,) (124) 08
M k=1

< M log

where the approximation in (a) is using the hi§NR as-
sumption and (b) follows from (119) and has to be read &5
an approximation with high probability (following the eiarl
discussion).

For By [Lstat, semi), We have the following higiSNR approx- 201
imation:

EH [Istat, semi]

[21]
~ M log (%) + B [log det (ﬁgdﬁind)} (125) 21
. , u i | [22]
< Mlog (M) n ;bg (F . At(z)> (126) .

M
b M .
®) Mlog (ﬁ) + Mlog (ﬂ) + Y log (i) (127) oy
r i=1

where (a) follows from Lemma 7 and (b) follows from Stirling -
approximation a§ M, N,.} — co. Combining (124) and (127), [25]
we obtain the statement in (36). [ ]
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