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Semiunitary Precoding for Spatially Correlated
MIMO Channels

Vasanthan Raghavan∗, Akbar M. Sayeed, Venugopal V. Veeravalli

Abstract— The focus of this paper is on spatial precoding in
correlated multi-antenna channels where the number of data-
streams is adapted independent of the number of transmit
antennas. Towards the goal of a low-complexity implementation,
a statistical semiunitary precoder is studied where the precoder
matrix evolves fairly slowly with respect to the channel evolution.
While prior work on statistical precoding has focussed on
information-theoretic limits, most of these computationsresult in
complicated functional dependencies of the mutual information
with the channel statistics that do not explicitly reveal the impact
of statistics on performance. In contrast, estimates that are
directly in terms of the channel statistics are obtained here for
the relative mutual information loss of a semiunitary precoder
with respect to a perfect channel information benchmark. Based
on these estimates, matching metrics are developed that capture
the degree of matching of a channel to the precoder structure
continuously and allow ordering two matrix channels in terms of
their mutual information performance. While these metrics are
based on bounds, numerical studies are used to show that the
proposed metrics capture the performance trade-offs accurately.
The main conclusion of this work is a simple-to-state fundamental
principle in the context of signaling design for single-user MIMO
systems: the best channel for the statistical precoder is the
channel that is matched to it.

Index Terms— Adaptive coding, correlated channels, low-
complexity signaling, MIMO systems, multimode signaling,semi-
unitary precoding, spatial precoding.

I. I NTRODUCTION

Multiple antenna communications has received significant
attention over the last decade as a mechanism to increase
the rate of information transfer, or the reliability of signal
reception, or a combination of the two. The focus of this
work is on point-to-point spatial precoding systems where the
number of independent data-streams is constrained to be a

Manuscript received May 28, 2008; revised December 15, 2009; accepted
July 22, 2010. The associate editor coordinating the reviewof this manuscript
and approving it for publication was Dr. Andrea Goldsmith.

This work was partly supported by the NSF under grant #CCF-0049089
through the University of Illinois, and grant #CCF-0431088through the
University of Wisconsin. This paper was presented in part atthe 42nd Annual
Allerton Conference on Communications, Control and Computing, Allerton
IL, 2006 and at the IEEE International Symposium on Information Theory,
Toronto, Canada, 2008.

V. Raghavan was with the Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign, Urbana, IL 61801 USA when this work
was done. He is currently with The University of Melbourne, Parkville,
VIC 3052, Australia. A. M. Sayeed is with the Department of Electrical
and Computer Engineering, University of Wisconsin-Madison, Madison, WI
53706 USA. V. V. Veeravalli is with the Coordinated Science Laboratory
and the Department of Electrical and Computer Engineering,University
of Illinois at Urbana-Champaign, Urbana, IL 61801 USA. Email: vas-
anthan raghavan@ieee.org, akbar@engr.wisc.edu, vvv@illinois.edu.
⋆Corresponding author.

subset,M , of the transmit dimensionNt. Initial works on pre-
coding study optimal signaling strategies when perfect channel
state information (CSI) is available at the transmitter andthe
receiver. These studies show that achannel diagonalizinginput
that corresponds to exciting the dominantM -dimensional
eigen-space of the channel, with a power allocation that can
be computed via waterfilling, is robust under different design
metrics [1]–[10].

Although perfect CSI provides a benchmark on the perfor-
mance, it is difficult to obtain in practice. More importantly,
the system performance is not robust under CSI uncertainty.
Small perturbations in the channel entries could result in
large perturbations in a singular vector of the channel if the
discernibility of the corresponding singular value diminishes.
Furthermore, even if perfect CSI is available, tight constraints
on complexity as well as energy consumption [11]–[13], [14,
Chap. 5] at the RF level in the mobile ends may disallow
the implementation of optimal solutions in practice. This is
because Third Generation wireless systems and beyond are
expected to be multi-carrier in nature and the burden of
computing the optimal input is magnified by the number of
sub-carriers and the rate of evolution of the channel realiza-
tions. Besides this, the structure of the input could change,
often dramatically, at the rate of evolution of the channel
realizations, which also makes it difficult to implement. These
reasons suggest that a slower rate of adaptation of the input
signals, that is of low complexity and is more robust to CSI
uncertainty, is preferred in practice.

In realistic wireless systems, where the channels are spatio-
temporally correlated, the slow rate of statistical evolution
implies that it is reasonable to assume perfect statistical
knowledge of the channel at the transmitter. Since the spatial
statistics experienced by the individual sub-carriers areidenti-
cal [15], [16], the burden of computing the optimal input with
only the statistical information at the transmitter is equivalent
to that of a narrowband system. Even in this setting, optimal
precoding has been studied for different spatial correlation
models [16]–[27]. These works show that the eigen-directions
of the optimal input covariance matrix correspond to a set
of the M -dominant eigenvectors of the transmit covariance
matrix and are hence, easily adaptable to change in statis-
tics. However, computing the power allocation across theM
modes requires Monte Carlo averaging or gradient descent-
type iterative approaches [22]–[25]. While the computational
complexity of the power allocation algorithm may be afford-
able at the base station end, whether it is possible or not at
the mobile end is questionable.

Many of the above works have also leveraged tools
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from asymptotic random matrix theory and made significant
progress in characterizing the information-theoretic limits in
correlated MIMO channels. However, most of them rely on the
implicit characterization of the limiting eigenvalue distribution
of random matrices (given by the Stieltjes transformational
formula [28], [29]) and obtain fixed-point equations which can
be solved at any fixedSNR to produce asymptotic capacity
formulas; see [22]–[25], [29], [30] and references therein.
While this approach is valid in the antenna asymptotics for
any fixedSNR, insights on the impact of the channel statistics
(the transmit and receive covariance matrices) on capacityis
rendered difficult due to the complicated nature of the fixed-
point equations.

With this background in mind, we restrict our theoretical
attention to the mutual information performance of a class of
statisticalsemiunitary1 precoders where the eigen-directions of
the input correspond to the dominant eigenvectors of the trans-
mit covariance matrix and the power allocation is uniform.
Our focus here is on two questions: 1) can the performance
of a semiunitary precoder be captured as a function of the
channel statisticstransparently, in contrast to existing implicit
characterizations?, 2) when is the semiunitary precoder near-
optimal with respect to a perfect CSI benchmark and what
is the “gap”2 in performance in terms of the system and the
channel parameters?

Towards answering these questions, we use tools from
asymptotic random matrix theory to bound the relative average
loss in mutual information between the perfect CSI and statisti-
cal semiunitary precoders. These bounds aretransparentand in
terms of the eigenvalues of the transmit and receive covariance
matrices. Motivated by these bounds, we introduce the notion
of matching metricsthat abstractly capture the degree of
channel-to-precoder matching. On one extreme is a perfectly
matched channel where: 1) theM -dominant eigenvalues of
the transmit covariance matrix arewell-conditioned3 whereas
the remaining(Nt −M) eigenvalues areill-conditionedaway
from the dominant ones, and 2) the receive covariance matrix
is alsowell-conditioned. On the other extreme is a perfectly
mismatched channel where both the transmit and receive
covariance matrices are ill-conditioned with the additional
constraint thatrank(H) ≥ M with probability 1.

Our work establishes the following simple-to-state funda-
mental principle, akin to existing source-channel matching
paradigms, in the context of signaling design for single-user
MIMO systems. While there exists no metric for ordering two
matrices [31], multi-antenna channel matrices can be ordered
continuously with respect to their average mutual information
performance with a semiunitary precoder of a fixed rank using
the matching metrics. In particular, the two extreme cases
of channels (as above) correspond to the setting where the
mutual information of the semiunitary precoder is closest and

1An Nt × M matrix X with M ≤ Nt is said to be semiunitary if it
satisfiesXH

X = IM .
2This gap can possibly be bridged with alimited feedbackscheme that

provides partial channel information to the transmitter.
3If Λt(1) ≥ · · · ≥ Λt(M) denote the firstM eigenvalues of the transmit

covariance matrix andΛt(1)
Λt(M)

is (or is not) significantly larger than1, we
loosely say that these eigenvalues are ill-(or well-)conditioned.

farthest to the perfect CSI precoder, respectively. While the
matching metrics have been defined based on bounds and
these bounds have only been established under certain special
assumptions (antenna asymptotics and highSNR), we provide
numerical studies to show that the matching metrics capture
the performance trade-offs accurately for allSNRs and even
small antenna numbers.

Despite the growing importance of statistical (semiunitary)
precoding in wireless standardization efforts, a comprehensive
study of the performance limits of statistical precoding is
lacking in the literature and the channel-to-precoder matching
principle established here provides some intuition on whattype
of precoder is best suited to a specific channel statistics.
Organization: After elucidating the system model in Sec-
tion II, we benchmark the structure of the optimal precoder
with perfect CSI and only statistical knowledge at the trans-
mitter in Section III. We also motivate the need to study
statistical semiunitary precoding in this section. In Section IV
and the appendices, using tools from random matrix theory and
eigenvector perturbation theory, we study the asymptotic (in
antenna dimensions) performance of a statistical semiunitary
precoder. We discuss the implications of our results and
illustrate them numerically in Section V. Concluding remarks
are provided in Section VI.
Notation: The M -dimensional identity matrix is denoted by
IM . The i, j-th and i-th diagonal entries of a matrixX are
denoted byX(i, j) and X(i), respectively. In more compli-
cated settings (for example, when the matrixX is represented
as a product or sum of many matrices), the above entries are
denoted byXij andXi, respectively. The complex conjugate,
conjugate transpose, and inverse operations are denoted by
(·)⋆, (·)H , and(·)−1 while the expectation, the trace and the
determinant operators are given byE [·], Tr(·) anddet(·), re-
spectively. The standard big-Oh (O) and little-oh (o) notations
are used along with the decreasing ordering for eigenvalues
of an n × n Hermitian matrixX: λ1(X) ≥ · · · ≥ λn(X).
The largest and the smallest eigenvalues are also denoted by
λmax(X) andλmin(X), respectively. The notationx+ stands
for max(x, 0). All logarithms are to basee unless mentioned
otherwise.

II. SYSTEM SETUP

We consider a communication system withNt transmit and
Nr receive antennas whereM (1 ≤ M ≤ Nt) independent
data-streams are used in signaling. That is, theM -dimensional
input vectors is precoded into anNt-dimensional vector via
the Nt × M precoding matrixF and transmitted over the
channel. With a transmit power constraint ofρ, the discrete-
time baseband signal model used is

y =

√
ρ

M
HFs + n (1)

wherey is theNr-dimensional received vector,H is theNr×
Nt-dimensional channel matrix, andn is theNr-dimensional
(zero mean, unit variance) additive white Gaussian noise. The
most general decomposition of the precoder is

F = VF Λ
1/2
F

UH
F (2)
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whereVF is Nt × M semiunitary,ΛF is an M × M non-
negative definite power shaping (allocation) matrix, andUF

is M × M unitary. Under the assumption thats has i.i.d.
components with zero mean and unit variance, the transmit
power constraint is met withTr(ΛF) ≤ M .
Channel Model: In this work, we make the reasonable as-
sumption that the receiver has perfect CSI. The main emphasis
here is on the impact of transmitter knowledge of statistics
of the channel process on performance. We assume a block
fading, narrowband model for the time-frequency correlation
of H and focus on the spatial correlation. It is well-known that
Rayleigh fading (zero mean complex Gaussian) is an accurate
model for H in a non line-of-sight setting and hence, the
complete spatial statistics are described by the second-order
moments of{H(i, j)}.

The most general, mathematically tractable spatial correla-
tion model is acanonical decomposition4 of the channel along
the transmit and receive covariance bases [24], [26], [32].In
this model, we assume that the auto- and cross-covariance
matrices of all rows ofH have the same unitary eigen-basis
(denoted byUt), and the auto- and cross-covariance matrices
of all the columns ofH have the same unitary eigen-basis
(Ur). Thus, we can decomposeH as

H = Ur Hind UH
t (3)

where Hind has independent, but not necessarily identically
distributed entries. The transmit and receive covariance matri-
ces are defined as

Σt , E [HHH] = Ut E [HH
indHind]U

H
t = UtΛtU

H
t (4)

Σr , E [HHH ] = Ur E [HindH
H
ind]U

H
r = Ur Λr UH

r (5)

whereΛt = E [HH
indHind] andΛr = E [HindH

H
ind] are diago-

nal. Note that the eigenvalues of the transmit covariance matrix
are

{ Nr∑

i=1

σ2
ik, k = 1, · · · , Nt

}
(6)

whereσ2
ij denotes the variance ofHind(i, j). Given a corre-

lated channel, we will assume thatM ≤ rank(Λt) ≤ Nt. We
will also assume that the columns ofHind are arranged in the
decreasing order of transmit eigenvalues.

Under certain conditions, the model in (3) reduces to
some well-known spatial correlation models such as the i.i.d.
model, the separable correlation [33] and the virtual represen-
tation [15], [23] frameworks. For example, in the separable
case, under the normalization that

Tr(Λt) = Tr(Λr) = ρc = NtNr, (7)

we can writeHind for the normalized channel as

H =
1√
ρc

· Σ1/2
r Hiid Σ

1/2
t (8)

=⇒ H ∼ 1√
ρc

· Ur Λ1/2
r Hiid Λ

1/2
t UH

t (9)

=⇒ Hind =
1√
ρc

· Λ1/2
r Hiid Λ

1/2
t (10)

4This model is referred to as the “eigen-beam or beamspace model” in [32]
and is used in capacity analysis in [24].

whereHiid is an i.i.d. channel matrix and the correlation of
the channel entries is in the form of a Kronecker product of
the transmit and receive covariance matrices. Even though the
separable model may be an accurate fit under certain channel
conditions, deficiencies acquired by the separability property
result in misleading estimates of system performance [26].The
readers are referred to [26], [32] for more details on how the
general (non-separable) version of the canonical model fits
measured data better.
Receiver Architecture: Under these assumptions, the optimal
reception strategy corresponds to non-linear maximum like-
lihood (ML) decoding. However, the exponential complexity
of ML decoding in both antenna dimensions and coherence
length implies that simpler receiver architectures are preferred.
In this work, we assume a linear minimum mean-squared error
(MMSE) receiver. With this receiver, the symbol correspond-
ing to the k-th data-stream is recovered by projecting the
received signaly on to theNr × 1 vector

gk =

√
ρ

M

( ρ

M
HFFHHH + INr

)−1

Hfk (11)

where fk is the k-th column of F. That is, the recovered
symbol is ŝ(k) = gH

k y, and the mean-squared error of this
recovery process,MSEk, is given by

MSEk =

[(
IM +

ρ

M
FHHHHF

)−1
]

k

. (12)

III. PRELIMINARIES

We first summarize known results on optimal precoder
design in this section before proceeding onto the focus of this
paper.

The metric of interest in this work is the mutual information
between the input and output symbols since it captures both
the achievable rate as well as reliability performance under
a concatenated inner and outer code design [34] (where soft
decisions are allowed at the decoder of the inner code). Under
the assumption that the input symbols are Gaussian, the mutual
information at anSNR (of ρ) is given as

I(s;y) = log det
(
IM +

ρ

M
FHHHHF

)
. (13)

It can be seen that maximizing the mutual information in (13)
can be formulated as the minimization of a Schur-concave
function: the determinant of the mean-squared error matrix[9].
Perfect CSI Case: A unified convex programming framework
for precoder optimization in the perfect CSI case, summarized
in the following lemma, is proposed in [9] by studying two
broad classes of functions: Schur-concave and Schur-convex
functions.

Lemma 1:Let f : R
M 7→ R be a function such thatf(·)

is monotonically increasing in its arguments. That is, let the
univariate functionf(· · · , xk, · · · ) : R 7→ R be monotonically
increasing for allk. If MSE = [MSE1 · · · MSEM ] and f(·)
is Schur-concave over its domain, thenf(MSE) is minimized
by Fperf whose singular value decomposition (SVD) is given
as

Fperf = [v1 · · · vM ] ·Λ1/2
perf . (14)
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On the other hand, iff(·) is Schur-convex,f(MSE) is mini-
mized by

Fperf = [v1 · · · vM ] ·Λ1/2
perf · Γ (15)

for an appropriate choice of unitary matrixΓ (see [9] for its
construction). In both cases, the diagonal entries ofΛperf are
obtained via waterfilling and we assume a SVD forH as

H = UHΛ
1/2
H

VH
H, VH = [v1 · · ·vNt

] (16)

and the singular values are arranged in decreasing order.
Specific instantiations of the above lemma have been studied
in the cases of average mean-squared error of the data-
streams [1]–[4], weighted average of mean-squared error ofthe
data-streams [5], [6], determinant of the mean-squared error
matrix [7], determinant under a peak-power constraint [8],and
bit-error rate [9], [10].

Lemma 2:Using the ideas of [9] and [31], Lemma 1 can
be straightforwardly extended to the case of perfect CSI
semiunitary precoding, whereΛF in (2) is constrained to be
ΛF = IM . If f(·) is Schur-concave over its domain, then
f(MSE) is minimized by

Fperf, semi = [v1 · · · vM ] . (17)

On the other hand, iff(·) is Schur-convex,f(MSE) is mini-
mized by

Fperf, semi = [v1 · · · vM ] · Γ (18)

for an appropriate choice of unitary matrixΓ (same as in the
perfect CSI case). In fact, Lemma 1 can be extended to the
case whereΛF is fixed (but is different fromIM ) by using
the notion of weak super-majorization from [31]. The details
are not provided here.
Statistical Case: Following Lemmas 1 and 2, since the eigen-
modes of the optimal input are a function of the CSI, perfor-
mance degradation with respect to CSI error is directly related
to singular vector perturbations of the channel matrix. While it
is true that a small perturbation in the matrix entries can only
lead to a small perturbation in the singular values, a small
entry-wise perturbation can result in alarge perturbation of
the singular vectors depending on the condition number of
the true channel matrix [35, p. 202-203], [36], [37]. See, for
example, [38], [39], [40, Figs. 6 and 7] etc. that illustrate
MIMO settings where losses equivalent to a25 dB SNR

penalty occur due to lack of perfect CSI.
On the other hand, it may not be possible to adapt the

precoder structure to the channel optimally even if perfect
CSI is available since RF design is often the fundamental
bottleneck for realizing MIMO systems in practice [14, Chap.
5]. This may be because: 1) the eigenspace of the optimal input
could change dramatically from one channel realization to the
next, and/or 2) the efficient utilization of CSI is constrained
by fundamental limits on energy per bit constraints at the
computational or processing level [11]–[14]. For example,
the move towards multi-carrier signaling and the fast rate
at which channel realizations evolve leads to computational
limits on how many SVD operations can be afforded. These
reasons suggest that statistical precoding where the optimal

input is adapted in response to the statistical information,
which evolves slowly compared with the channel realizations,
is of importance. In this setting, the following lemma considers
the mutual information maximization problem.

Lemma 3:Let H be described by the statistical model
in (3) with the eigenvalues ofΣt arranged in the decreasing
order. LetH̃ind denote theNr × M principal sub-matrix of
Hind. The optimal precoder that maximizes the average mutual
information is of the form

Fstat = Vstat Λ
1/2
stat (19)

where Vstat is a set of M -dominant eigenvectors ofΣt

andΛstat is the unique solution to the following constrained
optimization problem:

Λstat = argmax
Λ∈L

EH

[
log det

(
INr

+
ρ

M
H̃ind ΛH̃H

ind

)]
(20)

with L denoting the convex set of all diagonalM × M non-
negative definite matricesΛ such thatTr(Λ) ≤ M .
The optimality of the dominant eigenvectors ofΣt is not
surprising; see [17]–[20], [22]–[25] and references therein for
problems of a similar nature. The optimization in (20) is
standard: maximizing a concave function over a convex set.
A gradient descent-type approach for this is provided in [27]
and Monte Carlo approaches are provided in [23], [24].
Statistical Semiunitary Precoder: While Lemma 3 establishes
the benchmark in the statistical case, computational constraints
(as in the perfect CSI case) of Monte Carlo/gradient descent
approaches could often make the computation ofΛstat hard,
if not impossible. This motivates studying a low-complexity
alternative ofstatistical semiunitary precoding:

Fstat, semi = Vstat (21)

whereVstat corresponds to the optimal choice of eigen-modes
from Lemma 3.

Let Iperf andIstat, semi denote the mutual information (ran-
dom variables) achievable withFperf and Fstat, semi, respec-
tively. The main goal of this paper is to compare the per-
formance of a statistical semiunitary precoder with respect to
its perfect CSI benchmark. In particular, we would like to
estimate∆Isemi, defined as,

∆Isemi ,
EH [Iperf − Istat, semi]

EH [Istat, semi]
. (22)

The reason for considering a normalized quantity in (22) in
contrast toEH [Iperf − Istat, semi] is the following. For any
signaling scheme, the mutual information tends to zero as
ρ → 0 and tends to infinity asρ → ∞. Thus, the difference
in mutual information between two schemes can converge to
zero asρ → 0 at a rate different from that of either scheme,
and/or could blow up to infinity asρ → ∞. In this setting,
a more meaningful metric would be the relative difference in
mutual information between these schemes.

It is clear that∆Isemi is a complicated function of the
SNR, channel statistics and antenna dimensions, and a gen-
eral closed-form expression seems hard. To simplify further
analysis, we will assume that theSNR as well as the antenna
dimensions are large. In particular, we will assume that
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ρ ≥ α M
Λt(M) for some suitableα > 1. With respect to

asymptotics of antenna dimensions, four cases arise based on
the correlation structure in (3) and how antenna dimensions
go to infinity: i) separable correlation withMNr

→ 0 or ∞, ii)
non-separable correlation withMNr

→ 0 or ∞, iii) separable
correlation with M

Nr
→ γ ∈ (0,∞), and iv) non-separable

correlation with M
Nr

→ γ ∈ (0,∞). The first two cases denote
the setting ofrelative antenna asymptotics, where one antenna
dimension increases to infinity relative to the other. The last
two correspond to the case where antenna dimensions grow in
proportion.

IV. M UTUAL INFORMATION LOSS WITHSEMIUNITARY

PRECODING

The difference∆Isemi in (22) can be expanded as

∆Isemi =
EH [Iperf − Iperf, semi]

EH [Istat, semi]︸ ︷︷ ︸
∆I1

+
EH [Iperf, semi − Istat, semi]

EH [Istat, semi]︸ ︷︷ ︸
∆I2

(23)

where Iperf, semi denotes the mutual information achievable
with Fperf, semi. Since the argument within the expectation of
the numerator of∆I1 is not explicitly dependent on the spatial
correlation model, it is straightforward to obtain a bound for
∆I1 in the highSNR regime.

Proposition 1: Let ΛH(M) = λM (HHH) denote theM -
th largest squared singular value ofH as in (16). Ifρ is such
that ρ ≥ αEH

[
M

ΛH(M)

]
for someα > 1, ∆I1 is bounded as

∆I1 ≤ 2M

α2EH [Istat, semi]
·
EH

[(
1

ΛH(M)

)2
]

(
EH

[
1

ΛH(M)

])2 . (24)

Proof: See Appendix B.
Intuitively, as α and hence theSNR increases, the water-

filling power allocation of the perfect CSI scheme converges
to uniform power allocation across theM modes (see [22],
[23], [25], etc.) and thus,∆I1 decreases. The bound provided
in (24) is not tight since we have not characterized the exact
probability Pr(nH < M) (in App. B) that determines∆I1.
But the above bound is sufficient to capture the performance
loss with uniform power allocation. Characterization of∆I2,
which is explicitly dependent on the spatial correlation model,
is non-trivial. In the following section, we provide estimates
of ∆I2 for different correlation models and regimes.

A. Relative Antenna Asymptotics

We start with the simplest case of separable correlation.
Theorem 1:Let the channelH be described by the normal-

ized separable model as in (8)-(10). Let the columns ofHiid

be ordered such that the eigenvalues ofΛt are in decreasing

order. For any fixed value ofρ and under the assumption of
Nt

Nr
→ 0, ∆I2 is bounded as

∆I2 ≤ κ1 ·

√∑Nr

i=1(Λr(i))2

∑Nr

i=1 Λr(i)
· M
∑M

i=1 log
(
1 + ρ

M Λt(i)
) (25)

where κ1 is a constant determined from an application of
Lemma 6 (in App. A).

Proof: See Appendix C.
As seen from Appendix C,∆I2 is a function of only
λk

(
ΛtH

H
iidΛrHiid

)
andλk

(
Λ̃tH̃

H
iidΛrH̃iid

)
. Sinceλ(AB) =

λ(BA), Theorem 1 can be easily modified even whenM
Nr

→
∞. Hence, this case will not be studied in considerable detail.
We now consider the non-separable case withNt

Nr
→ 0.

Theorem 2:Let H be described by the general model
in (3) and letσ2

ij denote the variance ofHind(i, j) with the
assumption that

∑Nr

i=1 σ2
ij

Nr
= O(1) for all j = 1, · · · , M. (26)

There exists a constantκ2 determined from an application of
Lemma 6 (in App. A) such that

∆I2 ≤ κ2 ·
√

Nt

Nr
·

M∑

j=1

ρNr

M + ρ
∑

i σ2
ij

· 1
∑M

j=1 log
(
1 + ρ

M ·∑i σ2
ij

) . (27)

The proof of Theorem 2 follows along the approach of
Theorem 1 via the generalized asymptotic eigenvalue charac-
terization in Lemma 6. Observe that∆I2 in both (25) and (27)
converges to zero asSNR increases as 1

log(SNR) . In terms of
the asymptotic trend as antenna dimensions increase, since∑

i Λr(i) = ρc = NtNr, the typical behavior ofΛr(i) is
Λr(i) = O(Nt), which implies that

√∑

i

(Λr(i))2 = O(Nt

√
Nr)

=⇒

√∑Nr

i=1(Λr(i))2

∑Nr

i=1 Λr(i)
= O

(
Nt√
Nr

)
, (28)

which is essentially the same trend as (27).

B. Special Case: Beamforming

We now pay attention to the beamforming case (M = 1),
the low-complexity of which makes it an attractive signaling
choice in many wireless standards. While theSNR regime
where beamforming is capacity-optimal has been established
in prior work [22], [23], [25], [41], the performance gap
between statistical and perfect CSI beamforming is less clear.
Using tools from eigenvector perturbation theory, introduced
in [40], we establish the following result.

First, note that the term∆I1 is redundant in the beamform-
ing case. LetIperf and Istat denote the mutual information



6

achievable by beamforming with perfect CSI and statistical
information alone, respectively. Define the loss term

∆Ibf ,
EH [Iperf − Istat]

EH [Istat]
. (29)

The following discussion complements recent work on the
performance gap with the separable model [42], that has been
established by exploiting some recent advances in random ma-
trix theory. Unlike [42] which is based on exact random matrix
theory results and is applicable only forEH [Iperf − Istat] in
the separable case, we generalize the results to the general
canonical modeling framework, but do not consider fine re-
finement of constants in the following result for the sake of
brevity.

Proposition 2: In the regime whereNt

Nr
→ 0, ∆Ibf can be

bounded as

∆Ibf ≤ κbf ·
Nt · log(Nr)

Nr − Nt
· 1

log (1 + ρNr)
(30)

whereκbf is a constant that depends only on the eigenvalues
of Σt andΣr.

Proof: See Appendix D.
Note that the trend of∆I2 in (30) is similar to that of (25)
and (27) in terms ofSNR behavior, whereas in terms of
trend as antenna dimensions increase, we are able to leverage
eigenvector perturbation theory to obtain a tighter bound,in
contrast with the earlier discussion.

C. Proportional Growth of Antenna Dimensions

We now consider the more complicated asymptotic setting
where{M, Nr} → ∞ with M

Nr
→ γ andγ ∈ (0,∞).

Theorem 3:Let the channelH be characterized by the
normalized separable model. Also, letA , NtNr

M2 = O(1)

and B , M
Λr(M) = O(1). Let GM, • denote the geometric

means of the statistical eigenvalues, defined as,

GM, tx ,

(
M∏

i=1

Λt(i)

)1/M

, GM, rx ,

(
M∏

i=1

Λr(i)

)1/M

. (31)

If ρ = α · M
Λt(M) for someα > 1 andX is defined as

X , 1 −
√

AB ·
√

AB + 4α

2α
, (32)

∆I2 is bounded as

∆I2 ≤ log (e/M) + κ3

log(ρ/eρc) + log (GM, tx · GM, rx · X)
(33)

κ3 = κ′
3 + log

(
min{Λt(1), Λr(1)}
GM, tx · GM, rx · X

)
(34)

whereκ′
3 is a constant dependent only on the antenna dimen-

sions.
Proof: See Appendix E.

In the general case of non-separable correlation, bounding
∆I2 is difficult due to the lack of a fundamental random
matrix theory of spectral properties of random matrices with
independent entries. As a result, unlike the earlier cases,we
have to resort to approximations for∆I2.

Proposition 3: Let the channel be characterized by the non-
separable model withM

Nr
→ γ and γ ∈ (0,∞). Let δ >

0 be a constant (appropriately small). Then, the following
approximation to an upper bound of∆I2 holds with high
probability (which converges to1 asδ → 0):

∆I2 ≤ ∆IUB
2 (35)

≈
log
(

Nre
M

)
+ 1

M

∑M
i=1 log

(
1 + δ(M−1)Nr

Λt(i)

)

log
(

ρ
Nre

)
+ 1

M log
(∏M

i=1 Λt(i)
) . (36)

Proof: See Appendix F.
Since

∑

i

Λr(i) =
∑

i

Λt(i) = ρc = NtNr, (37)

the typical behavior ofGM, tx andGM, rx is

O(GM, tx) = O(GM, rx) = O(Nt) = O(Nr). (38)

Thus, typically, both (33) and (36) are symmetric with

∆I2
SNR→∞

= O
(

1

log(SNR)

)
and (39)

∆I2
{M,Nt,Nr}→∞

= O
(

1

log(Nt)

)
= O

(
1

log(Nr)

)
. (40)

Also, note that while (33) and (36) are asymmetric in the sense
that (33) is a function ofGM, rx whereas (36) is not. This
is a deficiency of the approximation technique in the most
general case and not of the trend exhibited by the tightest
bound possible for∆I2.

Comparing the bounds between the relative antenna asymp-
totic and the proportional growth settings, the only difference
is that∆I2 = O(1/

√
Nr) in the former case, whereas∆I2 =

O(1/ log(Nr)) in the latter case. This difference arises as
a consequence of the fundamental difference in asymptotic
spectral properties in the two cases.

V. D ISCUSSION ANDNUMERICAL STUDIES

We now use the bounds established in Section IV to develop
a heuristic on the structure ofH that is ‘best’ or ‘worst’ for a
given precoding scheme. For this, we freezeΛr to be a fixed
matrix so as to develop an understanding of the structure of
Λt that minimizes the bounds to∆Isemi.

Given that a constraint
∑Nt

i=1 Λt(i) = ρc has to be met, the
common performance loss-minimizingΛt (if it exists) is the
solution to the following simultaneous optimization:

max

{
M∑

i=1

log
(
1 +

ρ

M
Λt(i)

)
, GM, tx

}
, and

min

{
Λt(1),

M∑

i=1

log

(
1 +

δ1

Λt(i)

)}
(41)

for some δ1 > 0. The above objectives are equivalent to
minimizing ∆I2 in each of the four cases studied in Sec. IV.
While these objectives are in general unrelated, asSNR
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and antenna dimensions increase, the four problems can be
incorporated into the following optimization:

max

M∏

i=1

Λt(i) subject to

Nt∑

i=1

Λt(i) = ρc. (42)

The solution to the above problem is

Λt(1) = · · · = Λt(M) =
ρc

M
, (43)

Λt(M + 1) = · · · = Λt(Nt) = 0. (44)

On the other extreme, the worst choice ofΛt that minimizes∏M
i=1 Λt(i) and hence, maximizes the upper bound to∆Isemi

is of the form:

Λt(1) ≈ ρc and Λt(i) ≈ 0, i ≥ 2, (45)

but with the additional constraint thatrank(Λt) ≥ M . It
is important to note that the largest gap5 is not achieved
when rank(Λt) = 1. Motivated by the above discussion, it
is worthwhile defining amatching metric for the transmitter
side:

Mt ,

M∏

i=1

Λt(i), (46)

that captures the closeness of a given channel from the best and
worst channels. WhileMt is defined following Sec. IV where
bounds to∆Isemi are obtained, we hope that asMt increases,
the channel becomes more matched on the transmitter side and
the performance loss∆Isemi decreases andvice versa.

Capturing the impact ofΛr on performance loss in the
general setting is difficult sinceΛr is hidden in the first-order
analysis of Sec. IV. Nevertheless, in one special case, (25)
suggests that amatching metric for the receiver sidecan be
defined as

Mr ,

Nr∑

i=1

(Λr(i))
2
. (47)

Note that since
∑Nr

i=1 Λr(i) = ρc, Mr is minimized by

Λr =
ρc

Nr
INr

(48)

and maximized by

Λr(1) ≈ ρc and Λr(i) ≈ 0, i ≥ 2, (49)

but with the added constraint thatrank(Λr) ≥ M . It can
be seen that the performance loss is not maximized when
rank(Λr) < M . As before,Mr is defined following bounds
to ∆Isemi and the notion of matching has to be understood
within this fundamental constraint.

To summarize the above discussion, we refer to a channel
that is perfectly matched on both the transmitter and the
receiver sides as a perfectlymatched channeland this structure
is optimal (as per the bounds established) for the given
precoder structure (fixed choice ofM ). The structure of this
channel is such that: 1) the rank ofΛt is M with the dominant
transmit eigenvalues being well-conditioned, and 2)Λr is also

5In fact, if rank(Λt) = 1, the statistical precoder achieves the same
throughput as the optimal precoder.

well-conditioned. A channel that is ill-conditioned on both the
transmit and the receive sides such thatrank(H) ≥ M (with
probability1) is said to be a perfectlymismatched channel.

An interesting consequence of the study in Theorems 1
and 2 is that channel hardening, that occurs asNr increases,
results in the vanishing of∆Isemi. That is, statistical infor-
mation is as good as perfect CSI in the receive antenna
asymptotics.This behavior is peculiar of this asymptotic
regime, as documented in the beamforming case [38], [40],
[42]. The high SNR characterization for signaling withM
spatial modes (ρ ≥ α M

Λt(M) for someα > 1) has also been
identified in prior work [41]. Our results can also be extended
to the case of relative average error probability enhancement
with the semiunitary precoder. However, these details are not
provided here.
Numerical Studies: We now illustrate the results established
so far via numerical studies.
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lo
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I se
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r
 = 16
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r
 = 16
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r
 = 32

Bound, N
r
 = 32

Fig. 1. Comparison of Monte Carlo estimates of∆Isemi with the bounds
established in Theorem 1.

• Conservatism of the Bounds: While Sec. IV has estab-
lished bounds for∆Isemi under certain assumptions, it
is important to understand as to how conservative these
bounds are and whether they capture the underlying trade-
offs accurately in the low to mediumSNR regime and
with reasonable antenna numbers. Fig. 1 compares the
exact∆Isemi, obtained via Monte Carlo averaging, with
the bounds in Theorem 1 for the separable case with
Nt = 4, M = 2 and Nr = 4, 8, 16 and 32. We plot
log(∆Isemi) vs. ρ and while Fig. 1 shows that the bounds
are loose (due to the lack of tight random matrix theoretic
estimates) especially in the lowSNR regime with small
antenna numbers, they get tight in the regime where the
theoretical results have been established. Nevertheless,
the following study addresses the question of whether the
intuition obtained via these bounds is useful in practice
or not.

• Performance Gap as a Function of Mt: In contrast to
bounds on∆Isemi, the focus here is on the performance
gap between the perfect CSI and statistical precoders
with the exact∆Isemi. We consider4 × 4 channels with
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M = 2 and freezeUt and Ur to some fixed choice
in our study. We also freezeΛr to Λr = 4 I4 so as
to maintain ρc = NtNr = 16 and to focus on the
impact of matching on the transmitter side. Note that the
matching metric,Mt =

∏M
k=1 Λt(k), takes values in the

range(0, 64] in our setting. A family of∼1700 channels
(each characterized uniquely byΛt(k), k = 1, · · · , Nt)
is generated such that

∑Nt

k=1 Λt(k) = ρc = 16 andMt

takes values over its range. The channels become more
matched (on the transmitter side) to the precoder structure
asMt increases.

15 20 25 30 35 40 45 50 55 60
0
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0.1

0.15

0.2

0.25

Less Matched ← M
t
 → More Matched

∆I
se

m
i

ρ = 10 dB
ρ = 15 dB
ρ = 20 dB

Fig. 2. Gap in mutual information performance between statistical and perfect
CSI semiunitary precoding as a function of the matching metric Mt.

While much of our study has been based on asymptotic
random matrix theory, Fig. 2 illustrates that the notion
of matched channels developed here is useful even in
practically relevant regimes like4 × 4 channels. Fig 2
shows that the exact∆Isemi decreases asMt increases
for three choices ofρ. Note that for a given channel asρ
increases,∆Isemi decreases as1/ log(ρ). It is important
to note that while there exists no ordering relationship
between any two matrix channels [31], when the focus
is only on the mutual information performance,Mt (and
Mr) are sufficient to order channels.

• Asymptotic Optimality: The next study illustrates the
asymptotic optimality of statistical precoding. Fig. 3 plots
the exact∆Isemi as a function ofNr with Nt andM fixed
at Nt = 4 and M = 2. The channels have a separable
correlation structure withΛt = I4 whereasΛr = 4

Nr
INr

which results inρc = 4 for all the channels. As can
be seen from the study in the previous section, channel
hardening, where the eigenvectors ofHHH converge to
the eigenvectors ofΣt = E [HHH] as Nt

Nr
→ 0, ensures

that even statistical information is sufficient for near-
perfect CSI performance asNr increases.

VI. CONCLUDING REMARKS

The main focus of this work is on precoding for spatially
correlated multi-antenna channels that are often encountered in

10
1

10
−1

10
0

N
r

∆I
se

m
i 

ρ = 8 dB
ρ = 14 dB
ρ = 20 dB

Fig. 3. Performance loss with the statistical semiunitary precoder for fixed
Nt = 4, M = 2 asNr increases.

practice. Motivated and inspired by many recent wireless stan-
dardization efforts, we studied the performance of statistical
semiunitary precoding in this paper. Here, the eigen-modes
of the precoder are chosen to be the dominant eigenvectors
of the transmit covariance matrix whereas the power allo-
cation across the excited modes is uniform. We analytically
characterized the relative average mutual information loss of
the semiunitary precoder using tools from random matrix and
eigenvector perturbation theories.

Our results show that given a precoder architecture (that
is, fixed antenna dimensions and precoder rank), the relative
difference metric is minimized by a channel that is matched to
it. A matched channel is one that has: 1) the same number of
dominant transmit eigen-modes as the precoder rank, and 2)
the dominant transmit as well as the receive eigen-modes that
are well-conditioned. Our theoretical study also characterizes
matching metricsthat enable the comparison of two channels
with respect to performance loss captured by the relative
difference metric. In particular, as the channel becomes more
matched to the precoder structure and the matching metric
changes accordinglycontinuously, the performance loss de-
creases monotonically andvice versa. As a by-product of our
computations, we also showed that the semiunitary precoder
is near-optimal in the relative antenna asymptotic settingfor
any channel. This result generalizes previous work [40], [42]
on the beamforming case (M = 1) where the performance of
the statistical beamforming scheme has been studied.

While prior works on statistical precoding exist, ours is the
first attempt to transparently characterize the performance in
terms of the channel statistics. Much of this study has been
rendered feasible due to substantial advances in capturing
the eigen-properties of random matrices with independent
entries. Nevertheless, there exist many directions along which
this work can be developed. We now list a few of these
directions. This work is limited to the highSNR, large antenna
asymptotic regime where a comprehensive random matrix
theory is available to capture precoder performance [28], [29].
Even in this regime, it may be possible to refine the constants
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in the bounds for the relative loss terms and obtain further
insights on the impact of spatial correlation on performance
loss. The notion of precoder-channel matching introduced in
this work can be developed further to aid in the design of
low-complexity, structured and adaptive signaling schemes.
In the case of mismatched channels, the construction of
limited feedback schemes to bridge the gap in performance
has been undertaken in recent work [39]. The question of
trade-offs between spatial versus spatio-temporal precoding
and extensions to more general Ricean fading, multi-user,
wideband systems are also of interest.
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APPENDIX

A. Key Mathematical Results

We now introduce some key mathematical results from
matrix theory that will be needed in the ensuing proofs.

Lemma 4:This lemma provides bounds for eigenvalues of
sums and products of Hermitian matrices [43]. IfA andB are
n × n Hermitian matrices, for anyk = 1, · · · , n, we have

λk(A)λmin(B) ≤ λk(AB) ≤ λk(A)λmax(B), (50)

λk(A) + λmin(B) ≤ λk(A + B) ≤ λk(A) + λmax(B).
(51)

Lemma 5:This lemma extends the previous one to the
complex case [31, p. 253-255]. LetA be ann × n complex
matrix with {Ri, Ci} defined as

Ri =

n∑

j=1

|A(i, j)|, Cj =

n∑

i=1

|A(i, j)|, i, j = 1, · · · , n.

(52)

Let the eigenvalues ofA be arranged in a decreasing order:
|λ1(A)| ≥ · · · ≥ |λn(A)|, and let{Ri, Ci} be rearranged
such thatR[1] ≥ · · · ≥ R[n] andC[1] ≥ · · · ≥ C[n]. Then, we
have

k∏

i=1

|λi(A)| ≤ min
{ k∏

i=1

R[i],

k∏

i=1

C[i]

}
. (53)

Lemma 6:Let X be ap × n complex random matrix with
i.i.d. entries of mean zero, common variance1 and a finite
fourth moment. Consider two cases: 1)p is finite andn →
∞, and 2){p, n} → ∞ with p/n → 0. In either case, in
the asymptotics ofn, the empirical eigenvalue distribution of
XX

H−nIp

2
√

np converges pointwise with probability1 to the semi-
circular lawF (x) where

F (x) =





0 if x < −1,∫ x

y=−1
2
π

√
1 − y2 dy if − 1 ≤ x ≤ 1,

1 if x > 1.

(54)

In particular, with probability one, we have

1 − 2

√
p

n
≤ lim inf

n

λmin(XXH)

n

≤ lim sup
n

λmax(XXH)

n
≤ 1 + 2

√
p

n
. (55)

Let Λ be ann × n positive definite diagonal matrix. Under
the same assumptions onX, p, n as above, there exists a finite
constantγ1 > 0 (dependent onp andn only throughΛ) such
that, with probability1
∑

i Λ(i)

n
− γ1

√
p

n
≤ lim inf

n

λmin(XΛXH)

n

≤ lim sup
n

λmax(XΛXH)

n
≤
∑

i Λ(i)

n
+ γ1

√
p

n
. (56)

On the other hand, letX be ap × n complex random matrix
with independent entries from a fixed probability space such
that X(i, j) is zero mean, has varianceσ2

ij and

sup
n,p

max
ij

E [|X(i, j)|4] ≤ γ2 < ∞. (57)

Also, without loss of generality, assume that
{∑n

j=1 σ2
ij

}
are

arranged in decreasing order. Then there exists a finite constant
γ3 > 0 (independent ofp, n) such that, for alli
∑n

j=1 σ2
ij

n
− γ3

√
p

n
≤ lim inf

n

λi(XXH)

n

≤ lim sup
n

λi(XXH)

n
≤
∑n

j=1 σ2
ij

n
+ γ3

√
p

n
(58)

with probability 1.
Proof: We provide an elementary proof of the claim

when p is finite, n → ∞ and X(i, j) are standard, complex
Gaussian. Define the set

An ,

{
ω :

λmax(X(ω)ΛX(ω)H)

n
> 1 + ǫ1 + ǫ2

}
. (59)

If we can show that
∑

n Pr (An) < ∞, it follows from
the Borel-Cantelli lemma [44] thatPr (lim supAn) = 0. By
choosingǫ1 andǫ2 appropriately (as a function ofn), we can
establish strict bounds on the eigenvalues.

BreakingXΛXH into a diagonal component and an off-
diagonal component and using Lemma 4, it follows via a union
bound that

Pr (An) ≤ pPr

(∑n
i=1

(
|X(1, i)|2 − 1

)
Λ(i)

n
> ǫ1

)

+ p2Pr

( |∑n
i=1 X(1, i)Λ(i)X(2, i)⋆|

n
> ǫ2

)
. (60)

Using a Chernoff-type bound [44], we have the following:

Pr(An) ≤ p exp

(
− ǫ21n

2

2
∑n

i=1(Λ(i))2

)

+ 2p2 exp

(
− ǫ22n

2c∑n
i=1(Λ(i))2

)
(61)

for somec > 0. The smallest value ofǫ1 andǫ2 that can still
result inPr (lim supAn) = 0 is such that

ǫ1 = O(ǫ2) =

√∑n
i=1(Λ(i))2

n
· 1

n1/2−η
, η > 0. (62)
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Letting η ↓ 0, we have

lim sup
λmax(XΛXH)

n

≤
∑n

i=1 Λ(i)

n
+ γ4

√∑n
i=1 Λ(i)2

n
· 1√

n
, (63)

where γ4 > 0 is a constant independent ofp and n. The
expression forλmin(·) is symmetric with that ofλmax(·) and
can be obtained similarly. The extension to the case where
X has only independent entries (not necessarily complex
Gaussian) also proceeds via the same logic.

Sincep → ∞ in Case 2), the above technique is not useful
in establishing the claim of the lemma. Here, the result follows
from [45], [28, Theorem 2.9, p. 623]. The generalizations with
Λ and independent entries follow via the same proof technique
as in [45] and hence no proofs are provided. The readers are
referred to [28] for a brief summary of the general technique.

Stochastic Approximation for Random Determinants: In
the case of anN × N matrix Hiid, stochastic properties of
det(HiidH

H
iid) can be studied using theBartlett decomposition

(or bidiagonalization) of a sample covariance matrix [46],[47],
which states that there exist independent random variablesZi

on some probability space such that

Z , det
(
Hiid HH

iid

)
∼

N∏

i=1

Zi, (64)

Zi ∼
N∑

j=i

|Hiid(i, j)|2 ∼ 1

2
χ2 (2(N − i + 1)) (65)

whereχ2(2k) is a central chi-squared random variable with
2k degrees of freedom. In the non-i.i.d. case, performing this
task is difficult as an equivalent decomposition is not known.
Nevertheless, a tight stochastic approximation for the random
determinant is still possible.

Lemma 7 (Girko):Let H̃ind be anNr ×M random matrix
with Nr ≥ M and independent entries that are distributed as
CN (0, σ2

ij). There exist independent random variablesZ̃i, i =

1, · · · , M on some probability space such thatdet
(
H̃H

indH̃ind)
can be well-approximated as

det
(
H̃H

indH̃ind

)
≈

M∏

i=1

Z̃i, Z̃i ∼ i ·
∑Nr

k=1 |H̃ind(k, i)|2
Nr

. (66)

Proof: See [47, Chap. 2, p. 104] and [48, p. 35, 39]
for a version of the above statement on random determinant
approximation. The justifications for the approximation are
found in [26, Lemma 5].

B. Proof of Proposition 1

To characterize the behavior of∆I1, recall the structure of
Fperf andFperf, semi from Lemmas 1 and 2. Using these facts,
we have

∆I1 · EH [Istat, semi] = EH

[
nH∑

i=1

log
(
1 + ΛH(i)Λwf(i)

)]

− EH

[
M∑

i=1

log
(
1 +

ρ

M
ΛH(i)

)]
(67)

where given a channel realizationH,
{
ΛH(i), i =

1, · · · , Nt

}
are the squared singular values ofH, nH modes

of the channel are excited (1 ≤ nH ≤ M ) with power

Λwf(i) ,

(
µH − 1

ΛH(i)

)+

and the water levelµH is chosen

such that
∑nH

i=1 Λwf(i) = ρ. It can be easily checked that
Λwf(i) can be written as

Λwf(i) =
ρ

nH

+
1

nH

nH∑

j=1

1

ΛH(j)
− 1

ΛH(i)
, (68)

andnH satisfies

nH = arg max k s.t.

1 ≤ k ≤ M,

k∑

i=1

ΛH(i) − ΛH(k)

ΛH(i)ΛH(k)
≤ ρ. (69)

Hence, as stated in the bottom of the page, we have a bound
on ∆I1. In the second inequality, we have used the fact that
log(1 + x) ≤ x for all x > −1. The following simplifications
follow routinely:

∆I1 · EH [Istat, semi] − EH [M − nH]

≤ EH



 1

nH

nH∑

i=1




∑

j
ΛH(i)
ΛH(j)

1 + ρΛH(i)
M

− M

1 + ρΛH(i)
M







 (72)

≤ EH


M

nH

nH∑

i=1



∑

j

1

ρΛH(j)
− 1

1 + ρΛH(i)
M




 (73)

= EH

[
M

nH

nH∑

i=1

(
nH

ρΛH(i)
− 1

1 + ρΛH(i)
M

)]
(74)

= EH



M

nH

nH∑

i=1

nH + ρΛH(i)
(

nH

M − 1
)

ρΛH(i)
(
1 + ρΛH(i)

M

)



 (75)

≤ M2

ρ2
· EH

[
M∑

i=1

1

ΛH(i)2

]
. (76)

∆I1 · EH [Istat, semi] ≤ EH




nH∑

i=1

log


1 +

ρΛH(i)(M−nH)
nHM − 1 + ΛH(i)

nH

∑nH

j=1
1

ΛH(j)

1 + ρΛH(i)
M




 (70)

≤ EH




nH∑

i=1

ρΛH(i)(M−nH)
nHM − 1 + ΛH(i)

nH

∑nH

j=1
1

ΛH(j)

1 + ρΛH(i)
M



 (71)
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From (69), it is easily recognized thatnH ≥ k if

ρ ≥ k

ΛH(k)
−

k∑

i=1

1

ΛH(i)
. (77)

Thus, if ρ > αEH

[
M

ΛH(M)

]
for some α > 1 as in the

statement of the theorem, both the terms in the expansion
of EH [Istat, semi] in (76) can be bounded by constants that
depend only on the channel statistics. For this note that,

EH [M − nH] ≤ M · Pr(nH < M) (78)

≤ M · Pr

(
M

ΛH(M)
−

M∑

i=1

1

ΛH(i)
> ρ

)
(79)

≤ M · Pr

(
1

ΛH(M)
> αE

[
1

ΛH(M)

])
(80)

(a)

≤ M

α2
·
E

[(
1

ΛH(M)

)2
]

(
E

[
1

ΛH(M)

])2 , (81)

where (a) follows from Chebyshev’s inequality. A trivial upper
bound for the other term gives the desired result.

C. Proof of Theorem 1

It can be checked that the numerator,N , of ∆I2 can be
written as

N = EH

[
M∑

k=1

log

(
1 +

ρ

Mρc
λk

(
ΛtH

H
iidΛrHiid

))
]

− EH

[
log

(
1 +

ρ

Mρc
λk

(
Λ̃tH̃

H
iidΛrH̃iid

))]
(82)

whereH̃iid is the Nt × M principal sub-matrix ofHiid and
Λ̃t is theM ×M principal sub-matrix ofΛt. An application
of Lemma 4 shows that

N ≤ EH

[
M∑

k=1

log

(
1 +

ρΛt(k)

Mρc
λmax

(
HH

iidΛrHiid

))
]

− EH

[
log

(
1 +

ρΛt(k)

Mρc
λmin

(
H̃H

iidΛrH̃iid

))]
. (83)

Following an application of Lemma 6, we have

N ≤
M∑

k=1

log

(
1 +

ρΛt(k)

M

(
1 + γ

√∑
i(Λr(i))2∑
i Λr(i)

))

− log

(
1 +

ρΛt(k)

M

(
1 − γ′

√∑
i(Λr(i))2∑
i Λr(i)

))
(84)

where γ and γ′ follow from the corresponding bounds in
Lemma 6. After some straightforward simplifications, we have

N ≤
M∑

k=1

log

(
1 +

γ · ρΛt(k)

M + ρΛt(k)
·
√∑

i(Λr(i))2∑
i Λr(i)

)

−
M∑

k=1

log

(
1 − γ′ · ρΛt(k)

M + ρΛt(k)
·
√∑

i(Λr(i))2∑
i Λr(i)

)
. (85)

If x ≤ 1
2 , we have

− log(1 − x) = log

(
1 +

x

1 − x

)

≤ log (1 + x(1 + 2x)) ≤ log(1 + 2x), (86)

and this in combination with the log-inequality results in

N ≤ (γ + 2γ′) ·
√∑

i(Λr(i))2∑
i Λr(i)

·
M∑

k=1

ρΛt(k)

M + ρΛt(k)
(87)

≤ (γ + 2γ′) · M ·
√∑

i(Λr(i))2∑
i Λr(i)

. (88)

A lower bound to the denominator term,EH [Istat, semi], can be
obtained via the same logic and combining these two bounds
result in the statement of the theorem.

D. Proof of Proposition 2

We have the following well-known facts:

Iperf = log
(
1 + ρλ1

)
(89)

Istat = log

(
1 + ρ

Nt∑

k=1

λk|vH
k ustat|2

)
(90)

where λ1 = λmax(HHH), ustat is an eigenvector corre-
sponding to the dominant eigenvalue ofΣt and an eigen-
decomposition ofHHH is of the form:

HHH =

Nt∑

k=1

λkvkv
H
k . (91)

The following simplifications can be made:

∆Ibf · EH [Istat] ≤ EH

[
log(1 + ρλ1)

]

− EH

[
log(1 + ρλ1|vH

k ustat|2)
]

(92)

EH

[
log(1 + ρλ1|vH

k ustat|2)
]

≥ E

[
log (1 + ρλ1(1 − δ)) · χ

(
|vH

k ustat|2 > 1 − δ
) ]

(93)

(a)
= E

[
log (1 + ρλ1(1 − δ))

]
Pr
(
|vH

k ustat|2 > 1 − δ
)

(94)

(b)

≥ E

[
log (1 + ρλ1(1 − δ))

]
·
(
1 − 2Nte

− δκNr
Nt−1

)
(95)

where the bounds are optimized over the choice ofδ, (a)
follows from the independence between singular values and
singular vectors of random matrices with independent en-
tries [29], [47], [48], (b) follows from the distortion bound
computed in [40, Theorem 1] via eigenvector perturbation
theory, andκ is a constant that depends only on the eigenvalues
of Σt andΣr. We thus have,

∆Ibf · EH [Istat] ≤ EH

[
log

(
1 +

ρλ1δ

1 + ρλ1(1 − δ)

)]

+ 2Nt · e−
δκNr
Nt−1 · EH [Iperf ] . (96)

Upon applying Jensen’s inequality and noting thatEH[λ1] ≤
ρc = NtNr, we have

EH [Iperf ] ≤ log(1 + ρNtNr), (97)
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which when used with the choice

δ =
Nt

Nr · κ
·
[
log(2Nr) + log (log (1 + ρNtNr))

]
(98)

results in

∆Ibf ≤
log
(
1 + δ

1−δ

)
+ Nt

Nr
· EH[Iperf ]

log(1+ρNtNr)

EH [Istat]
. (99)

In the regime whereNt

Nr
→ 0, both the terms in the above

equation are on the same order and thus, we have

∆Ibf · EH [Istat] ≤
Nt · log(Nr)

Nr
· κ1, (100)

whereκ1 is an appropriate condition number-dependent quan-
tity. Using (95) with the choice ofδ in (98) followed by
an application of Lemma 6 leads to the statement of the
proposition.

E. Proof of Theorem 3

As in App. C, we can write∆I2 as

1 + ∆I2 =
EH[Iperf, semi]

EH[Istat, semi]
(101)

=
EH

[∑M
k=1 log

(
1 + ρ

M λk(HHH)
)]

EH

[∑M
k=1 log

(
1 + ρ

M ρc
λk(Λ̃tH̃

H
iidΛrH̃iid)

)] . (102)

The denominator of (102) can be computed following the
method in [30, Theorem 1] and equals

EH[Istat, semi] =

M∑

k=1

log

(
1 +

ρ

ρc
µΛt(k)

)

+

M∑

k=1

log

(
1 +

ρ

ρc
µ̃Λr(k)

)
− ρM

ρc
µµ̃, (103)

whereµ and µ̃ satisfy the recursive equations

µ =
1

M

M∑

k=1

Λr(k)

1 + ρ
ρc

µ̃Λr(k)
, (104)

µ̃ =
1

M

M∑

k=1

Λt(k)

1 + ρ
ρc

µΛt(k)
. (105)

A simple lower bound forEH[Istat, semi] is obtained by using
the facts thatlog(1 + x) ≥ log(x) for x > 0 and ρ

ρc
µµ̃ ≤ 1

resulting in

EH[Istat, semi] ≥
M∑

k=1

log

(
ρ2

ρ2
ce

µµ̃Λt(k)Λr(k)

)
. (106)

We now establish that the above bound is order-optimal asα
increases (withρ = α M

Λt(M) ), by lower boundingµµ̃. For this,
note that x

1+ax , a > 0 is monotonically increasing inx and
hence,

µ ≥ Λr(M)

1 + ρ
ρc

µ̃Λr(M)
, µ̃ ≥ Λt(M)

1 + ρ
ρc

µΛt(M)
, (107)

combining both of which results in the quadratic inequality

ρ2

ρ2
c

Λt(M)Λr(M)
(
µµ̃
)2

−
(

2ρ

ρc
Λt(M)Λr(M) + 1

)
· µµ̃

+ Λt(M)Λr(M) ≤ 0. (108)

It is straightforward to check that

2ρ2

ρ2
c

·Λt(M)Λr(M) · µµ̃ ≥ 2ρ

ρc
·Λt(M)Λr(M) + 1

−
√

4ρ

ρc
·Λt(M)Λr(M) + 1. (109)

Letting A and B denoteA = NtNr

M2 and B = M
Λr(M) , and

noting that both areO(1) according to the assumption of the
theorem, elementary computation shows that

ρ

ρc
µµ̃ ≥ 1 −

√
AB ·

√
AB + 4α

2α
(110)

with ρ = α · M
Λt(M) . Combining these facts, we have

EH[Istat, semi] ≥ M log

(
1 −

√
AB ·

√
AB + 4α

2α

)

+

M∑

k=1

log

(
ρ

eρc
·Λt(k)Λr(k)

)
. (111)

Proceeding in the same way, one can obtain an upper bound for
EH[Iperf, semi]. Since the main goal here is to obtain the trends
of ∆I2, we find it convenient and less cumbersome6 to replace
the upper bound with an approximation (log(1+x) ≈ log(x))
by ignoring the term that decays as1

x . Thus, we have

EH[Iperf, semi] ≈ M log
( ρ

M

)

+ EH

[
M∑

k=1

log

(
λk(ΛtH

H
iidΛrHiid)

ρc

)]
(112)

(a)

≤ M log
( ρ

M

)
+ min(A, B) (113)

A = MEH

[
log

(
λmax(H

H
iidΛrHiid)

ρc

)]
+

M∑

k=1

log (Λt(k))

(114)

B = MEH

[
log

(
λmax(HiidΛtH

H
iid)

ρc

)]
+

M∑

k=1

log (Λr(k)) ,

(115)

where in (a) we have used Lemma 4. Combining (111)
and (113), we have

∆I2 ≤ log (e/M) + κ3

log(ρ/e) + log (X/ρc) + log (GM, tx · GM, rx)
(116)

κ3 = min

{
EH

[
log
(
λmax(H

H
iidΛrHiid)

)]
,

EH

[
log
(
λmax(HiidΛtH

H
iid)
)]
}

− log (GM, tx) − log (GM, rx) − log(X) (117)

6The approximation can be made precise, but we will not botherwith this
technicality here.
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where X and GM, • are as defined in the statement of the
theorem. Noting that [28]

lim sup
λmax(H

H
iidHiid)

Nr
≤ K (118)

for some appropriate constantK that only depends onNt and
Nr, we have the statement of the theorem.

F. Proof of Proposition 3

We first apply Lemma 5 withA = HH
indHind, n = Nt and

k = M to bound the product of eigenvalues ofA, resulting
in:

M∏

i=1

λi(H
H
indHind) ≤

M∏

i=1

C[i] (119)

where

Ci

Nr
=

∑Nr

k=1 |Hind(k, i)|2
Nr

+

M∑

j=1, j 6=i

∣∣∣
∑Nr

k=1 Hind(k, j)H⋆
ind(k, i)

∣∣∣
Nr

. (120)

Using the law of large numbers, we know that the first term
converges toΛt(i)

Nr
whereas each of the terms in the second

sum is small with high probability. More precisely, for every
δ > 0, there exists anǫ > 0 such that

Ci ≤ Λt(i) + δ(M − 1)Nr with prob. ≥ 1 − (M − 1)ǫ.
(121)

Thus, we have

EH [Iperf, semi]

= EH

[
M∑

k=1

log
(
1 +

ρ

M
λk(HindH

H
ind)
)]

(122)

(a)≈ M log
( ρ

M

)
+

M∑

k=1

log
(
λk(HindH

H
ind)
)

(123)

(b)

≤ M log
( ρ

M

)
+

M∑

k=1

log
(
Λt(i) + ǫ(M − 1)Nr

)
(124)

where the approximation in (a) is using the highSNR as-
sumption and (b) follows from (119) and has to be read as
an approximation with high probability (following the earlier
discussion).

For EH[Istat, semi], we have the following highSNR approx-
imation:

EH [Istat, semi]

≈ M log
( ρ

M

)
+ EH

[
log det

(
H̃H

indH̃ind

)]
(125)

(a)≈ M log
( ρ

M

)
+

M∑

i=1

log

(
i

Nr
· Λt(i)

)
(126)

(b)→ M log
( ρ

M

)
+ M log

(
M

Nre

)
+

M∑

i=1

log (Λt(i)) (127)

where (a) follows from Lemma 7 and (b) follows from Stirling
approximation as{M, Nr} → ∞. Combining (124) and (127),
we obtain the statement in (36).
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[29] A. M. Tulino and S. Verdù, “Random matrices and wireless communi-
cations,” Foundations and Trends in Commun. and Inf. Theory, vol. 1,
no. 1, June 2004.

[30] W. Hachem, O. Khorunzhiy, Ph. Loubaton, J. Najim, and L.Pastur, “A
new approach for capacity analysis for large dimensional multi-antenna
channels,”IEEE Trans. Inf. Theory, vol. 54, no. 9, pp. 3987–4004, Sept.
2008.

[31] A. W. Marshall and I. Olkin,Inequalities: Theory of Majorization and
its Applications, Academic Press, NY, 1979.

[32] W. Weichselberger, M. Herdin, H. Ozcelik, and E. Bonek,“A stochastic
MIMO channel model with joint correlation of both link ends,” IEEE
Trans. Wireless Commun., vol. 5, no. 1, pp. 90–100, Jan. 2006.

[33] C.-N. Chuah, J. M. Kahn, and D. N. C. Tse, “Capacity scaling in MIMO
wireless systems under correlated fading,”IEEE Trans. Inf. Theory, vol.
48, no. 3, pp. 637–650, Mar. 2002.

[34] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,”IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 670–678, Apr. 2004.

[35] J. W. Demmel,Applied Numerical Linear Algebra, SIAM Publishers,
1st edition, 1997.

[36] R. Mathias, “Spectral perturbation bounds for positive definite matrices,”
SIAM J. Matrix Anal. Appl., vol. 18, no. 4, pp. 959–980, Oct. 1997.

[37] R. Bhatia, Matrix Analysis, Springer-Verlag, 1997.
[38] V. Raghavan, A. M. Sayeed, and N. Boston, “When is limited feedback

for transmit beamforming beneficial?,”Proc. IEEE Intern. Symp. Inf.
Theory, pp. 1544–1548, Sept. 2005.

[39] V. Raghavan, V. V. Veeravalli, and A. M. Sayeed, “Quantized multimode
precoding in spatially correlated multi-antenna channels,” IEEE Trans.
Sig. Proc., vol. 56, no. 12, pp. 6017–6030, Dec. 2008.

[40] V. Raghavan, R. W. Heath, Jr., and A. M. Sayeed, “Systematic codebook
designs for quantized beamforming in correlated MIMO channels,”
IEEE Journ. Sel. Areas in Commun., vol. 25, no. 7, pp. 1298–1310,
Sept. 2007.

[41] V. Raghavan, V. V. Veeravalli, and R. W. Heath, Jr., “Reduced rank
signaling in spatially correlated MIMO channels,”Proc. IEEE Intern.
Symp. Inf. Theory, pp. 1081–1085, June 2007.

[42] A. Forenza, M. Mckay, A. Pandharipande, R. W. Heath, Jr., and I. B.
Collings, “Adaptive MIMO transmission for exploiting the capacity of
spatially correlated MIMO channels,”IEEE Trans. Veh. Tech., vol. 56,
no. 2, pp. 619–630, Mar. 2007.

[43] R. A. Horn and C. R. Johnson,Matrix Analysis, Cambridge University
Press, 1985.

[44] R. A. Durrett, Probability: Theory and Examples, Duxbury Press, 2nd
edition, 1995.

[45] Z. D. Bai and Y. Q. Yin, “Convergence to the semi-circle law,” Annals
Prob., vol. 16, no. 2, pp. 863–875, 1988.

[46] T. W. Anderson, An Introduction to Multivariate Statistical Analysis,
John Wiley, NY, 1st edition, 1960.

[47] V. L. Girko, Theory of Random Determinants, Kluwer, MA, 1990.
[48] V. L. Girko, Theory of Linear Algebraic Equations with Random

Coefficients, Allerton Press, NY, 1996.

PLACE
PHOTO
HERE

Vasanthan Raghavan (S’01–M’06) received the
B.Tech degree in Electrical Engineering from the
Indian Institute of Technology at Madras, India in
2001, the M.S. and the Ph.D. degrees in Electrical
and Computer Engineering in 2004 and 2006, re-
spectively, and the M.A. degree in Mathematics in
2005, all from the University of Wisconsin-Madison,
Madison, WI. He is currently a research fellow with
The University of Melbourne, Parkville, Australia.
He was with the Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, Urbana,

IL from 2006 to 2009. His research interests span multi-antenna communi-
cation techniques, quickest change detection, information theory, multihop
networking, robust control, and random matrix theory.

PLACE
PHOTO
HERE

Akbar M. Sayeed (S’89–M’97–SM’02)is currently
Professor of Electrical and Computer Engineering at
the University of Wisconsin-Madison. He received
the B.S. degree from the University of Wisconsin-
Madison in 1991, and the M.S. and Ph.D. degrees
from the University of Illinois at Urbana-Champaign
in 1993 and 1996, all in Electrical Engineering.
He was a postdoctoral fellow at Rice University
from 1996 to 1997. His current research interests
include wireless communications, statistical signal
processing, multi-dimensional communication the-

ory, information theory, learning theory, time-frequencyanalysis, and ap-
plications in wireless communication networks and sensor networks. Dr.
Sayeed is a recipient of the Robert T. Chien Memorial Award (1996) for his
doctoral work at Illinois, the NSF CAREER Award (1999), the ONR Young
Investigator Award (2001), and the UW Grainger Junior Faculty Fellowship
(2003). He is a Senior Member of the IEEE and is currently serving on the
signal processing for communications technical committeeof the IEEE Signal
Processing Society. Dr. Sayeed also served as an Associate Editor for the IEEE
Signal Processing Letters from 1999-2002, and as the technical program co-
chair for the 2007 IEEE Statistical Signal Processing Workshop and the 2008
IEEE Communication Theory Workshop.

PLACE
PHOTO
HERE

Venugopal V. Veeravalli (S’86–M’92–SM’98–
F’06) received the Ph.D. degree in 1992 from
the University of Illinois at Urbana-Champaign,
the M.S. degree in 1987 from Carnegie-Mellon
University, Pittsburgh, PA, and the B.Tech degree
in 1985 from the Indian Institute of Technology,
Bombay, (Silver Medal Honors), all in Electrical
Engineering. He joined the University of Illinois at
Urbana-Champaign in 2000, where he is currently
a Professor in the department of Electrical and
Computer Engineering, and a Research Professor

in the Coordinated Science Laboratory. He served as a program director
for communications research at the U.S. National Science Foundation in
Arlington, VA from 2003 to 2005. He has previously held academic positions
at Harvard University, Rice University, and Cornell University.

His research interests include distributed sensor systemsand networks,
wireless communications, detection and estimation theory, and information
theory. He is a Fellow of the IEEE and was on the Board of Governors of the
IEEE Information Theory Society from 2004 to 2007. He was an Associate
Editor for Detection and Estimation for the IEEE Transactions on Information
Theory from 2000 to 2003, and an associate editor for the IEEETransactions
on Wireless Communications from 1999 to 2000. Among the awards he has
received for research and teaching are the IEEE Browder J. Thompson Best
Paper Award, the National Science Foundation CAREER Award,and the
Presidential Early Career Award for Scientists and Engineers (PECASE).


