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Abstract— Active Wireless Sensing (AWS) is motivated by
emerging advances in wireless technology and offers an alter-
native and complementary approach to in-network processing
for rapid and energy-efficient information retrieval in wireless
sensor networks. The basic architecture in AWS consists of:
i) a wireless information retriever (WIR), equipped with an
antenna array, that interrogates a select ensemble of wireless
sensors with space-time waveforms, ii) the sensors acting as
active scatterers – modulating the acquired waveforms with
their (possibly encoded) measured data – to generate a mul-
tipath response to the WIR’s interrogation signal, and iii) the
WIR retrieving the sensor data by exploiting the space-time
characteristics of the resulting multipath sensing channel. An
important feature of AWS is its flexibility in tailoring the
space-time interrogation waveforms, sensor encoding strategies,
and associated processing of the received multipath signal
at the WIR for energy-efficient information retrieval. A key
mechanism for energy efficiency is distributed source-channel
matching: generating a coherent response from sub-ensembles
of sensors with highly correlated data, based on the spatial
smoothness or correlation in the signal field or on the spatial
scale of local cooperation in the network. In this paper, we will
discuss a family of source-channel matching protocols in AWS
and associated tradeoffs involving rate, reliability and energy
consumption of information retrieval.

I. I NTRODUCTION

Existing approaches to information extraction in a wire-
less sensor network are heavily geared towards in-network
processing where either the network as a whole obtains a
consistent estimate of desired information (e.g., field data,
or some summary statistic), or the distributed informationis
routed to a decision center via multi-hop routing (see, e.g.,
[1], [2]). However, in-network processing generally incurs
excess delay and energy consumption due to the related tasks
of information routing and coordination between nodes. In
[3] we proposed an alternative approach – Active Wireless
Sensing (AWS) – in which a wireless information retriever
(WIR) interrogates a select ensemble of sensor nodes for
rapid and energy-efficient retrieval of desired information
(see Fig. 1). AWS has two primary attributes: i) the sen-
sor nodes are relatively “dumb” in that they have limited
computational power, and ii) the WIR is computationally
powerful, is equipped with a multi-antenna array, and initi-
ates the information retrieval by interrogating the nodes with
wideband space-time waveforms. The basic concept of AWS
is inspired by an intimate connection with communication
over space-time multiple antenna (MIMO) wireless channels
in a multipath environment: sensor nodes act as active

Fig. 1. Active Wireless Sensing: basic communication architecture.

scatterers and generate a multipath signal in response to
WIR’s interrogation signal. A key idea behind AWS is to
separate multiple sensor responses by resolving the multipath
signals in angle and delay at a resolution commensurate with
the spatio-temporal signal space (see Figs. 1 and 2). This is
facilitated by a virtual representation of wideband space-time
wireless channels that we have developed in the past several
years [4], [5]. In particular, the virtual representation yields
a natural partitioning of sensor responses in angle-delay
and provides a mathematical framework for studying fun-
damental limits of information retrieval in AWS at different
spatio-temporal resolutions afforded by agile RF front-ends
and reconfigurable antenna arrays [6]. Indeed, technological
advances in agile RF front-ends provide another motivation
for Active Wireless Sensing: WIR’s equipped with agile RF
transceivers could potentially enable rapid learning of sensor
field structure at varying spatio-temporal resolutions. Such
WIR’s could also be integrated with strategically located
access points for network state monitoring and control.
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Fig. 2. Computation of sufficient statistics at the WIR.



An important feature of AWS is its flexibility in tailoring
the space-time interrogation waveforms, sensor encoding
strategies, and associated processing of the received mul-
tipath signal at the WIR for energy-efficient information re-
trieval. A key mechanism for energy efficiency is distributed
source-channel matching: generating a coherent response
from sub-ensembles of sensors with highly correlated data,
based on the spatial smoothness or correlation in the signal
field or on the spatial scale of local cooperation in the
network. In this paper, we present a family of source-channel
matching protocols in AWS and associated tradeoffs involv-
ing rate, reliability and energy consumption of information
retrieval.

AWS is similar, in terms of the underlying physics, to the
concept of Imaging Sensor Nets that has been independently
proposed recently [7], [8]. However, the basic underlying
methodology in these works, inspired by radar imaging
principles, is quite different and focusses on sensor local-
ization and detection of spatially well-separated events.Our
emphasis, in contrast, is on high-rate sensor information re-
trieval and we exploit connections with recent developments
in space-time wireless communications theory. We believe
that these two related approaches provide complementary
perspectives on information extraction in sensor networks
and could be fruitfully cross-leveraged by exploring the
connections between wideband radar imaging and wideband
wireless communications in the context of sensor networks.

The next section reviews the basic space-time communi-
cation architecture in AWS and the computation of sufficient
statistics at the WIR for sensor information retrieval. In
Section III, we present a family of canonical sensing con-
figurations representing different scales of correlation in the
signal field. Section IV analyzes the performance of infor-
mation retrieval at the highest spatio-temporal resolution. In
Section V, we discuss information retrieval with distributed
source-channel matching and quantify the associated gainsin
energy-efficiency. Section VI discusses the notion of sensing
capacity in AWS. In all sections, we present numerical results
to illustrate the theory.

II. T HE BASIC SPACE-TIME COMMUNICATION

ARCHITECTURE

Consider an ensemble ofK sensors uniformly distributed
over a region of interest, as illustrated in Fig. 1. We first
outline the basic assumptions made in this work. We as-
sume that the WIR, equipped with anM -element array,
is sufficiently far from the sensor ensemble, in the same
plane, so that far-field assumptions apply. Furthermore, there
exists a strong line of sight path between the WIR and each
sensor (no fading) and the difference in path loss between
individual sensors and the WIR can be neglected due to
the large distance between the WIR and the sensor field.
The WIR interrogates the sensor ensemble by transmitting
wideband (spread-spectrum) signaling waveforms,{sm(t)},
from different antennas where eachsm(t) is of durationT
and (two-sided) bandwidthW . Let N = TW ≫ 1 denote
the time-bandwidth product of the signaling waveforms that

represents the approximate dimension of the temporal signal
space. Thus, the signal space of spatio-temporal interrogation
waveforms has dimensionMN = MTW . Information
retrieval at the highest angle-delay resolution, as elaborated
later (see also [3]) constrain the bandwidth to:c/∆d <
W < 2fc/M where fc is the carrier frequency,c is the
speed of wave propagation, and∆d is the minimum distance
between the sensors. The above constraints also imply that
fc > cM/2∆d. For example, for a sensor separation of
∆d = 1m, a WIR with M = 10 antennas uses a signaling
bandwidthW ≥ 300MHz, and a carrier frequencyfc on the
order of a few GHz.

A. The Multipath Sensing Channel in AWS

We make the practically feasible assumption that the WIR
and the sensor nodes are carrier (frequency) synchronized
but not phase synchronized. Furthermore, we assume that
the phase offset between each sensor and the WIR stays
constant at least during two channel uses (each channel
use corresponds to the signaling durationT ). The basic
communication protocol consists of the WIR transmitting
the space-time signals(t) = [s1(t), s1(t), . . . , sM (t)]T in
an interrogation packet to initiate information retrievalfrom
the sensor ensemble. For simplicity, we consider a one-
dimensional uniform linear array (ULA) and assumeM to
be odd WLOG, and defineM̃ = (M − 1)/2. The array
steering/response vector for a ULA is given by

a(θ) =
[

ej2πM̃θ, . . . , 1, . . . , e−j2πM̃θ
]T

(1)

where the normalized angleθ is related to the physical
angle of arrival/departureϕ (see Fig. 1) asθ = d sin(ϕ)/λ.
Here d denotes the spacing between the antennas andλ
is the wavelength of propagation. The steering/response
vector represents the relative phases across antennas for
transmitting/receiving a beam in the directionθ. We assume
that the sensor ensemble projects a maximum angular spread
(180 degrees) at the WIR array atd = λ/2 spacing; larger
spacings can be used for smaller angular spreads.1

The i-th sensor acquires a waveform,xi(t), that is a
superposition of the transmitted signal [3]

xi(t) = e−jφiaT (θi)s(t − τi) (2)

whereθi denotes the direction of thei-th sensor relative to
the WIR array (see Fig. 1),τi denotes the relative delay be-
tween thei-th sensor and the WIR andφi denotes a random
relative phase between the WIR and thei-th sensor. Thei-th
sensor encodes its measurement inβi and modulatesxi(t) by
βi and transmits it with energyE after a fixed duration (same
for all sensors) following the reception of the interrogation
packet. We assume instantaneous retransmission from each
sensor for simplicity. Thus, the transmitted signal from the
i-th sensor can be expressed as

yi(t) = βi

√

E
M

xi(t) = βi

√

E
M

e−jφiaT (θi)s(t − τi) (3)

1d = λ/2 sin(ϕmax) spacing results is a one-to-one mapping between
θ ∈ [−0.5, 0.5] andϕ ∈ [−ϕmax, ϕmax] ⊂ [−π/2, π/2].



whereE[|βi|2] = 1 and
∫

E[|xi(t)|2]dt = M so thatyi(t)
has energyE . The received vector signal at the WIR,r(t) =
[r1(t), r2(t), · · · , rM (t)]T , is a superposition of all sensor
transmissions and by the principle of reciprocity it can be
expressed as

r(t) =

√

E
M

K∑

i=1

βie
−jφia(θi)a

T (θi)s(t − τ̃i) + w(t) (4)

where τ̃i = 2τi denotes the round-trip relative delay in the
response from theith sensor,w(t) denotes an AWGN vector
process representing the noise at different WIR antennas. Let
τmax = maxi τi and assume thatmini τi = 0 WLOG. Using
(4), the effective system equation relating the received vector
signal at the WIR to the transmitted interrogation signal can
be expressed as

r(t) =

√

E
M

∫ 2τmax

0

H(t′)s(t − t′)dt′ + w(t) (5)

H(t) =

K∑

i=1

αiδ(t − τ̃i)a(θi)a
T (θi) (6)

whereαi = βie
−jφi , and theM×M matrixH(t) represents

the impulse response for the space-time multipath channel
underlying AWS. The delay spread of the channel is2τmax

and we assume that the signaling durationT ≫ 2τmax.
Note that the system representation (5), even though

it relates the transmitted interrogation signals(t) to the
received signal at the WIR, is independent of the power
used for transmitting the interrogation packet. This is because
after acquiring the signaling waveform in the interrogation
phase, each sensor retransmits it with energyE and the factor√
E/

√
M reflects this normalization. Each transmission from

the sensor ensemble of durationT defines a single channel
use for information retrieval.

B. Sensor Localization Via Multipath Resolution

The active sensing channel matrix (6) has exactly the same
form as the impulse response of a physical multiple-antenna
(MIMO) multipath wireless channel where the sensor data
and phases{αi = βie

−jφi} in the sensing channel corre-
spond to the complex path gains associated with scattering
paths in a MIMO multipath channel [4], [5]. We leverage the
virtual representationof MIMO multipath channels that is
a unitarily equivalentrepresentation of the physical sensing
channel matrix [4], [5]. A key property of the virtual channel
representation is that its coefficients represent a resolution of
sensors in angle and delay (and Doppler in case of relative
motion, not considered in this paper) commensurate with the
signal space parametersM andW (andT ), respectively.

The virtual representation in angle corresponds to beam-
forming in M fixed virtual directions:θ̃m = m/M , m =
−M̃, · · · , M̃ . Define theM × M unitary (DFT) matrix

A =
1√
M

[a(−M̃/M), . . . , 1, . . . ,a(M̃/M)] (7)

whose columns are the normalized steering vectors for the
virtual angles and form an orthonormal basis for the spatial

signal space. The virtual spatial matrixHV (t) is unitarily
equivalent toH(t) as

H(t) = AHV (t)AT ↔ HV (t) = AHH(t)A∗ (8)

and the virtual coefficients, representing the coupling be-
tween them-th transmit beam andm′-th receive beam are
given by

HV (m′,m; t)=aH(m′/M)H(t)a∗(m/M)/M (9)

=M

K∑

i=1

αig

(

θi −
m′

M

)

g
(

θi −
m

M

)

δ(t − τ̃i) (10)

≈ HV (m,m; t)δm−m′ (11)

HV (m,m; t) ≈ M
∑

i∈Sθ,m

αig
2
(

θi −
m

M

)

δ(t − τ̃i)(12)

where g(θ) = 1
M

sin(πM θ)
sin(πθ) is the Dirichlet sinc function

that captures the interaction between the fixed virtual beams
and true sensor directions,δm denotes the kronecker delta
function, and the last approximation follows from the virtual
path partitioning [4]:Sθ,m = {i ∈ {1, · · · ,K} : −1/2M <
θi − m/M ≤ 1/2M} denotes the set of all sensors whose
angles lie in them-th spatial resolution bin of width∆θ =
1/M , centered around them-th beam. Thus, the virtual
spatial representation partitions the sensors in angle: itis
approximately diagonal and itsm-th diagonal entry contains
the superposition of all sensor responses that lie within the
m-th beam of width1/M .

The sensor responses within each spatial beam can be
further partitioned by resolving their delays with resolution
∆τ = 1/W . Let L = ⌈2τmaxW ⌉ be the largest normalized
relative delay. The diagonal entries of virtual spatial matrix
can be further decomposed into virtual, uniformly spaced
delays as [5]

HV (m,m; t) ≈
L∑

ℓ=0

HV (m,m, ℓ)δ(t − ℓ/W ) (13)

HV (m,m, ℓ) = M

K∑

i=1

αig
2
(

θi −
m

M

)

sinc(Wτ̃i − ℓ) (14)

≈ M
∑

i∈Sθ,m∩Sτ,ℓ

αig
2
(

θi −
m

M

)

sinc(Wτ̃i − ℓ) (15)

where sinc(x) = sin(πx)/πx captures the interaction be-
tween the fixed virtual and true sensor delays, andSτ,ℓ =
{i : −1/2W < τ̃i − ℓ/W ≤ 1/2W} is the set of all sensors
whose relative delays lie within theℓ-th delay resolution bin
of width ∆τ = 1/W .

Thus, the angle-delay virtual representation partitions the
sensor responses into distinct angle-delay resolution bins:
the virtual coefficientHV (m,m, ℓ) is a superposition of
all sensor responses whose angles and delays lie in the
intersection ofm-th spatial beam andℓ-th delay ring (see
Fig. 1). For a given number of antennasM and a given
minimum spacing between sensors∆d, the bandwidthW
can be chosen sufficiently large (W > c/∆d), in principle, so



that there is exactly one sensor in each angle-delay resolution
bin. In this highest-resolution case, we can define one-to-one
mappingsi(m, ℓ) and(m(i), ℓ(i)) that associate each sensor
with a unique angle-delay resolution bin. It follows from (15)
that information retrieval from thei-th sensor amounts to
estimating the corresponding virtual angle-delay coefficient

hV (m, ℓ) = HV (m,m, ℓ) ↔ Mβi(m,ℓ)γi(m,ℓ) (16)

γi(m,ℓ) = e−jφig2(θi − m/M)sinc(Wτ̃i − ℓ)|i=i(m,ℓ) .

We note that above development emphasizes the virtual
coefficient that primarily carries information form thei-
sensor resolved in the(m(i), ℓ(i))-th angle-delay resolution
bin. In general, there will be interference between the sensor
responses, as elaborated next.

C. Angle-Delay Sufficient Statistics

We now describe the basic processing of the received
signalr(t) at the WIR for computing the sufficient statistics
for information retrieval, as illustrated in Fig. 2. Define
s(t) = A∗sV (t) and rV (t) = AHr(t) where sV (t)
and rV (t) are theM -dimensional transmitted and received
signals in the virtual spatial domain (beamspace). In our
model,sV (t) represents the temporal codes acquired by the
sensors in different virtual spatial bins. Using (5), (8) and
(13), the system equation (ignoring the fixed delay in re-
transmission by the sensor nodes) that relates the received
signal to the transmitted signal in the beamspace is

rV (t) =

√

E
M

L∑

ℓ=0

HV (ℓ)sV (t − ℓ/W ) + wV (t) (17)

where HV (ℓ) represents the virtual spatial matrix corre-
sponding to theℓ-th virtual delay andwV (t) represents
a vector of independent temporal white AWGN processes
with PSDσ2. EachsV (m; t), them-th component ofsV (t),
is a unit-energy pseudo-random waveform with bandwidth
W and durationT (e.g., a direct-sequence spread spectrum
waveform), and we have2

〈sV (m; t − ℓ/W ), sV (m; t − ℓ′/W )〉 ≈ δℓ−ℓ′ . (18)

Thus, correlating eachrV (m; t) with delay versions of
sV (m; t) yields the sufficient statistics for information re-
trieval {zm,ℓ : m = −M̃, · · · , M̃ ; ℓ = 0, · · · , L}:

zm,ℓ = 〈rV (m; t), sV (m; t − ℓ/W )〉 (19)

=

∫ T+2τmax

0

rV (m, t)s∗
V (m, t − ℓ/W )dt . (20)

Remark 1 (Ideal Case):In general, the matched-filter
outputs in (20) include the desired response from the sensor
in the(m, ℓ)-th angle-delay resolution bin as well as interfer-
ence from sensors in other resolution bins. Such interference
is virtually eliminated in the ideal situation when the sensors
positions coincide with the center of the resolution bins; that

2The cross-correlation is on the order of1/N = 1/TW and thus very
small for largeN .

is, (θi, τi) = (m/M, ℓ/W ) for somem ∈ {−M̃, . . . , M̃}
and ℓ ∈ {0, . . . , L − 1}. In this case,zm,ℓ simplifies to

zm,ℓ =
√

MEβi(m,ℓ)γi(m,ℓ) + wm,ℓ , (21)

where {wm,ℓ} are i.i.d. Gaussian with varianceσ2. Note
that the factor

√
M reflects theM -fold array gain or the

beamforming gain.�
While different temporal waveforms can be assigned to

different spatial beams in AWS, in the rest of the paper we
focus on the attractive special case in which the same spread-
spectrum waveform,c(t) is transmitted on all spatial beams;
that is, sV (m; t) = c(t) for all m. We begin by assuming
sufficient angle-delay resolution so that each sensor lies in a
unique angle-delay resolution bin. We refer to theK ≤ ML
angle-delay resolution bins occupied by transmitting sensors
to be “active”. All further analysis and results presented in
this paper assume that all the angle-delay bins are active i.e.
K = ML. The matched filter outputs corresponding to thei-
th active sensor can then be uniquely labeled by the mapping
z(m(i),ℓ(i)) 7→ zi for i = 1, ..,K. We can now express the
matched filter outputs for active bins/sensors as

zi =
√

MEβiγ̃i +
√

ME
∑

k 6=i

βkγ̃i,k + wi (22)

where
√

MEβiγ̃i represents the desired signal component
from the i-th sensor andβkγ̃i,k, k 6= i, represents the
interference due to the otherK − 1 active sensors (in other
distinct bins) where

γ̃i,k = e−jφkg(θk − m(i)/M)sinc(Wτ̃k − ℓ(i)) (23)

and γ̃i = γ̃i,i. The matched filter outputs{zi = zm(i),ℓ(i) :
i = 1, · · · ,K} represent the sufficient statistics for infor-
mation retrieval at the WIR. Note that when the sensors are
ideally placed at the center of the angle-delay bins,γ̃i,k = 0
for all k 6= i and |γ̃i| = 1 i.e. each MF output contains
only the corresponding sensor’s data with no interference
(see (21)).

Stacking the MF outputs in aK = ML dimensional
vector, we have

z =
√

MEΓβ + w =
√

ME
K∑

i=1

βiΓi + w (24)

Γ = [Γ2,Γ2, · · · ,ΓK ] = [γ̃i,j ] (25)

whereΓ is theK ×K coupling matrix that maps the sensor
data vector,β = [β1 . . . βK ]T , to the angle-delay MF output
vectorz andw is a complex AWGN vector with varianceσ2.
The column vectorΓk represents theangle-delay signature
generated by thek-th sensor at the WIR.

III. C ANONICAL SENSING CONFIGURATIONS

We now present a family of canonical sensing config-
urations in AWS that form the basis of this paper. For
simplicity, we consider coherent BPSK transmissions from
sensors:{βi ∈ {−1,+1}}, and the phases{φi} are assumed
known at the WIR. Phase estimation is possible if the phases
{φi} are stable for at least two channel uses [3]. In this



case, each sensor data transmission consists of two packets:
a training packet of ‘+1’ for phase estimation at the WIR
followed by an information packet containing the information
bit. We note that non-coherent (on-off) signaling can also be
employed in AWS [3].
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Fig. 3. Illustration of canonical sensing configurations atmaximum angle-
delay resolution forK = ML = 9 × 12 = 108 active sensors. The active
sensors are partitioned asK = KindKcoh. (a) Independent transmissions
from all sensors (Kind = 108) (b) Kind = 9 independent sensor
transmissions withKcoh = 12 sensors transmitting each independent bit.

In the canonical sensing configurations, theK = ML
active sensors are partitioned intoKind groups orspatial
coherence regions (SCR’s), each group consisting ofKcoh

sensors so thatK = KindKcoh, as illustrated in Fig. 3. We
assume that all theKcoh sensors in each group transmit
the same bit, whereas the bits from distinct groups are
independent. That is,βi = β̃µ for all i ∈ Sµ where Sµ

is theµth group of sensors in theµth SCR and the different
β̃µ, µ = 1, · · · ,Kind are independent. Thus, for a given
value ofKind, Kind bits of information are retrieved in each
channel use, whereasKcoh identical sensor measurements
from each SCR increase energy-efficiency. The above sens-
ing configurations are an idealized abstraction of correlated
sensor measurements: all sensors within each group/SCR
have highly correlated measurements, whereas the sensor
measurements in different regions are statistically indepen-
dent, corresponding to independent sensor measurements.

With the above partition of sensors, theK-dimensional
sensor data vectorβ in (24) can be expressed as

β =








β1

β2

...
βK








= Uβ̃ (26)

=








1Kcoh
0 · · · 0

0 1Kcoh
· · · 0

...
...

. . . 0

0 0 · · · 1Kcoh















β̃1

β̃2

...
β̃Kind








where 1Kcoh
is a column vector of sizeKcoh containing

all ‘1’s representing the correlated transmissions from the
different sensors in a coherence group. The matrixU is a
K×Kind matrix that maps theKind-dimensional vector,̃β,
of independent information bits to theK-dimensional,β, of
sensor transmissions.

IV. I NFORMATION RETRIEVAL AT HIGHEST RESOLUTION

In this section, we describe the signal processing at
the WIR for information retrieval in the canonical sens-
ing configurations in Section III at the highest angle-delay
resolution: each angle-delay resolution bin corresponds to
a distinct sensor. We analyze the resulting probability of
error (Pe) in retrieving theKind bits of information in each
channel use. Since we haveKind independent data streams
each consisting ofKcoh copies, we assume WLOG that the
first Kcoh MF outputs correspond to the first sensor group,
S1, the secondKcoh to groupS2 and so on. Then, the vector
of MF outputs can be expressed as

z = [zT
1 ,zT

2 , · · · ,zT
Kind

]T

=
√

MEΓUβ̃ + w =
√

MEQβ̃ + w

=
√

ME
Kind∑

i=1

β̃iqi + w (27)

where eachzi is a Kcoh × 1 vector corresponding to the
sensors in thei-th group and

Q = ΓU = [q1, q2, · · · , qKind
] (28)

qi =
∑

k∈Si

Γk , i = 1, · · · ,Kind , (29)

with Q being theK × Kind matrix of effective angle-delay
signaturesthat maps theKind independent bit streams iñβ
to theK MF outputsz, andΓk being thekth column ofΓ
in (25).

A. Angle-Delay Signature Matched Filtering

Due to interference between angle-delay signatures of
different sensors in (27), it is well-known that the optimal
ML detector of the independent bit vector̂β has exponential
complexity inK [9]. The simplest receiver structure simply
ignores the interference and match filters to the angle-delay

signatures of different sensors:ˆ̃β = sign{Re(QHz)}. The
i-th component of the decision statistics,z̃ = QHz, can be
expressed as

z̃i =
√

ME(qi
Hqi)β̃i

︸ ︷︷ ︸

Si

+
√

ME
∑

k 6=i

(qi
Hqk)β̃k

︸ ︷︷ ︸

Ii

+ qi
Hw

︸ ︷︷ ︸

Ni

(30)
where Si represents the desired signal from thei-th co-
herence region,Ii the interference term, andNi the noise.
Using the Gaussian approximation for the interferenceIi,
the probability of error for thei-th bit stream can be
characterized as [9]

Pe(i) = Q
(√

2SINR(i)
)

(31)

where the Signal-to-Interference-and-Noise-Ratio (SINR) is
given by

SINR(i) =
E[|Si|2]

E[|Ii|2] + E[|Ni|2]
(32)

=
2ME‖qi‖4

‖qi‖2σ2 + ME∑k 6=i |qH
i qk|2

(33)



Note that under ideal conditions,Γi
H
Γk = δi−k, the

interference term in (33) vanishes, and thePe reduces to

Pe,ideal = Q

(√

2ME
σ2

(
K

Kind

))

= Q

(√

2MEKcoh

σ2

)

(34)
which is thePe for a BPSK signaling system transmitting
with Kcoh times the individual sensor power and theM -
fold increase in the received SNR at the WIR is due to
array gain. The above formula reveals a basicrate-versus-
reliability tradeoff mediated by transmission power in AWS
at the highest resolution:increase in rate by increasingKind

(multiplexing gain) comes at the cost of loss in reliability
(SNR) due to a decrease inKcoh.

Two extreme cases of this tradeoff are illustrative. On one
extreme is theKind = 1 ↔ Kcoh = K case, representing
highly redundant/correlated sensing in which all sensors
transmit identical bit streams; that is,βi = β̃1 for all i. Since
there is no interference, the corresponding error probability
is given by

Pe = Q

(√

2M‖qi‖2E
σ2

)

≈ Q

(√

2MKE
σ2

)

(35)

since ‖qi‖2 =
∑K

i=1

∑K
j=1 Γi

H
Γj ≈ K. This case repre-

sents the low-rate extreme in which a single bit is retrieved
in each channel use, although atK times the per-sensor SNR.

At the other extreme is theKind = K ↔ Kcoh = 1 case
representing independent sensing where all sensors transmit
independent data streams; that is,βi = β̃i for all i. This
case represents high-rate information retrieval and a total of
K bits are retrieved by the WIR during each channel use.
The probability of error can be expressed as

Pe = Q

(√

2ME‖Γi‖4

σ2‖Γi‖2 + ME
∑

k 6=i |Γi
H
Γk|2

)

. (36)

In the ideal case, if the sensor positions are exactly aligned
with the center of the angle-delay resolution bins, then there
is no interference between sensors and thePe is given by
(34) with Kcoh = 1

Pe = Q

(√

2ME
σ2

)

(37)

which is thePe of BPSK signaling overK parallel AWGN
channels each with SNRME/σ2. In general, the system is
interference-limited since thePe exhibits an error floor in
the limit of high transmit SNR

Pe → Q

(√

2‖Γi‖4

∑

k 6=i |Γi
H
Γk|2

)

. (38)

Thus, in addition to a loss in received SNR in the ideal case,
the high-rate case also suffers from interference in general.

B. Linear MMSE Interference Suppression

As noted above, thePe based on angle-delay signature
matched filtering suffers from an error floor, especially at
high values ofKind. Thus, methods for mitigating inter-
sensor interference are critical for energy-efficient operation
in AWS. The low-power communication channel from the
sensor network to the WIR is a multiple access channel
(MAC) and the different sensors are analogous to multi-
ple users simultaneously accessing the channel with dis-
tinct angle-delay signatures. Thus, a range of multiuser
detection techniques [9] can be leveraged. In particular,
low-complexity linear interference suppression techniques
can yield competitive performance [9]. In this section, we
describe a simple linear MMSE interference suppression
technique [9], [10].

The basic idea behind MMSE interference suppression
is to exploit the differences in the angle-delay signatures
for different coherence groups,{qi}. This is attained by
designing a MMSE filter that jointly operates on all active
MF outputsz. The filter operates on the MF outputs within
each channel use; no joint processing is done across time.
Specifically, the detector at the WIR takes the form

ˆ̃
β = sign {Re (Lmmsez)} (39)

where theKind × K filter matrix Lmmse is given by

Lmmse = arg min
L

E[‖Lz − β̃‖2] = QHR−1 (40)

whereR = E[zzH ] = MEQQH + σ2I is the correlation
matrix of the MF outputs. In (40),R−1 suppresses the
interference corrupting each of MF outputs and the matrix
QH performs angle-delay signature matched filtering on
the resulting filtered MF outputs. The final decision is
then formed as in (39). Theith filtered statisticz̃i, i =
1, · · · ,Kind, can be expressed as

z̃i =
√

MEqi
HR−1qiβ̃i +

√
ME

∑

k 6=i

qi
HR−1qkβ̃k

+qi
HR−1w

(41)

whereqi
HR−1qi represents the filtered desired signal and

qi
HR−1qk, the suppressed interferers. Using a Gaussian

approximation for the interference [9], thePe for the i-th
bit stream can be expressed as

Pe(i) = Q







√
√
√
√
√

2ME|qi
HR−1qi|2

σ2‖qi
HR−1‖2 + ME ∑

k 6=i

|qi
HR−1qk|2







(42)
We note that thePe associated with MMSE filtering does not
suffer from error floors [9] as confirmed by the numerical
results presented in the next section. We note that the
computation of the MMSE filter can be done in a variety
of ways, in practice [3].



C. Numerical Results

We now illustrate the performance of information retrieval
at the highest resolution with numerical results. We consider
a WIR equipped withM = 9 antennas which transmits a
single spread-spectrum waveform in all virtual spatial beams:
sV (m; t) = c(t) for all m, where a lengthN = TW = 127
pseudo-random binary code is used forc(t). We assume that
the transmission delays from the sensors to the WIR fall
within L = 12 delay bins, resulting in a total ofML = 108
angle-delay resolution bins at the highest resolution. We
also assume that all the bins are “active” with a unique
sensor associated with each bin. The sensors transmit their
information via BPSK symbols. For simulation purposes, we
assume that perfect phase estimates are available at the WIR.
In practice, we can estimate the phases{φi}, as long at they
remain constant over two channel uses [3].
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Fig. 4. Pe vs. SNR plots for an AWS system retrievingKind bits per
channel use at maximum angle-delay resolution. (a) Without interference
suppression. (b) With MMSE interference suppression.

The probability of errorPe as a function of the per-
sensor transmit SNR,ρsen = E/σ2, is shown in Fig. 4(a)
for different values ofKind. The idealPe curves represent
benchmarks in which the sensors are located at the center of
the bins to eliminate interference. All otherPe (non-ideal)

plots correspond to the average performance over multiple
random positions of the sensors within their respective bins,
and thePe reflects the average performance across all active
sensors. AsKind decreases, the required SNR for a givenPe

is reduced due to an increase inKcoh. However, non-ideal
detection (Fig. 4(a)) incurs a loss in SNR compared to the
ideal case and also exhibits aPe floor due to interference;
with increasingKind, the interference level increases and
hence thePe saturates at a larger value.

Fig. 4(b) illustrates the performance with interference
suppression. As evident, AWS with interference suppression
delivers remarkable performance and exhibits no error floors
in contrast to MF-based detection.

−30 −25 −20 −15 −10 −5 0 5 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Transmit SNR

P
e

 

 

K
ind

 = 108: Exp.

K
ind

 = 108: Theory

K
ind

 = 36: Exp

K
ind

 = 36:Theory

K
ind

 = 18: Exp

K
ind

 = 18: Theory

Fig. 5. Comparison of the analytically computedPe values with numeri-
cally estimated values for the non-ideal scenario with MMSE filtering.

Fig. 5 compares the numerically estimated values ofPe

(with interference suppression in Fig. 4(b)) with the corre-
sponding analytic expression in (42). The agreement is quite
good and the deviations can be attributed to the Gaussian
approximation of interference (also noted in [9]).

V. SOURCE-CHANNEL MATCHING: INFORMATION

RETRIEVAL THROUGH ANGLE-DELAY FOCUSSING

In information retrieval at maximum resolution each angle-
delay resolution bin is associated with a distinct sensor.
As a result, each sensor transmission is associated with a
distinct MF output,zi, i = 1, · · · ,K, in (27). On the other
hand, in the canonical sensing configurations, onlyKind ≤
K independent bits are transmitted andKcoh = K/Kind

sensors in each group transmit the same bit. These identical
transmissions are coherently combined at the receiver via
matched filtering to the effective angle-delay signaturesqi,
i = 1, · · · ,Kind. However, in the process, even in the ideal
case,Kcoh MF outputs, along with their individual noises,
contribute to the decoding of the independent bit from each
coherence group.

The motivation for matched source-channel communica-
tion is to coordinate the transmissions from theKcoh sensors
in each group so that, in effect, they arecoherentlycombined
during communication over the channel and the combined



signal gets mapped to a single angle-delay resolution bin
at the WIR. Viewed another way, matched source-channel
communication converts theKcoh × Kcoh parallel channels
between each coherence group and the WIR into aKcoh ×1
coherent multiple access channel (MAC) through a form of
distributedangle-delay focussing: theK sensor transmissions
are now naturally mapped toKind distinct active angle-
delay resolution bins at the WIR (as opposed toK bins at
maximum resolution), andKcoh sensor transmissions from
each group coherently contribute to each active MF output.
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Fig. 6. Illustration of source-channel matching. (a) Activeangle-delay
resolution bins at the WIR corresponding to a canonical sensing con-
figuration, K = KindKcoh, at the highest resolution; all angle-delay
resolution bins are active. (b) Active angle-delay resolution bins at the
WIR corresponding to source-channel matching; onlyKind angle-delay
resolution bins are active at the WIR andKcoh sensor transmissions from
each group contribute coherently to each bin.

The idea of matched source-channel communication is
illustrated in Fig. 6. LetKind = MindLind ↔ Kcoh =
McohLcoh so that each coherence region withKcoh = 12
sensors corresponds toLcoh = 4 delay resolution bins
and Mcoh = 3 angle resolution bins at the maximum
resolution, as illustrated in Fig. 6(a). Matched source-channel
communication involves three key effects in each coherence
group, as illustrated in Fig. 6(b): i) the angular resolution is
reduced by a factorMcoh so that theMcoh angle resolution
bins in Fig. 6(a) get mapped to a single angle resolution
bin in Fig. 6(b); ii) the sensor transmissions in distinctLcoh

delay resolution bins in Fig. 6(a) are “lined-up” in time so
that they lie in a single delay resolution bin as in Fig. 6(b);
and iii) the Kcoh sensors in each group that now lie in a
single angle-delay resolution bin in Fig. 6(b) transmit in a
phase-coherent fashion.

How do we realize the above three effects in practice to
realize a matched source-channel communication network
architecture? The first effect can be realized by reducing the
antenna spacings at the WIR by a factor ofMcoh (Mcoh =
3 in Fig. 6) [6]. This effectively results inM/Mcoh =
Mind distinct spatial beams, each with aMcoh times wider
beamwidth [6]. The second effect can be realized through
distributed time-reversal techniques [11] to line up the sen-
sor transmissions inLcoh delay resolution bins. The third
effect can be realized by applying distributed beamforming
algorithms [12] to make theKcoh sensor transmissions from
each group, that lie in a single angle-delay resolution bin
in Fig. 6(b), phase coherent. An alternative approach to
realizing the source-channel matching is illustrated in Fig. 7.

The lower spatial resolution can be attained by reducing the
carrier frequency by a factor ofMcoh, whereas instead of
using time-reversal to align the sensor responses in time, we
could alternatively decrease the delay resolution by a factor
of Lcoh by decreasing the signaling bandwidth by a factor
of Lcoh.
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Fig. 7. Alternative approach to achieving source-channel matching (a)
Active angle-delay resolution bins corresponding to a canonical sensing
configuration,K = KindKcoh, at the highest resolution. (b)Kind active
angle-delay resolution bins created via reduced angle-delay resolution.

The effective system equation for matched source-channel
communication can be inferred from the system equation
(27) at maximum resolution as

zsc = [zsc,1, zsc,2, · · · , zsc,Kind
]T

=
√

MEQHQβ̃ + wsc

=
√

ME
Kind∑

i=1

β̃ivi + wsc (43)

where the theKind × Kind matrix

V = QHQ = [v1,v2, · · · ,vKind
] (44)

represents the effective coupling between theKind indepen-
dent bits and theKind active angle-delay resolution bins at
the WIR, and theKind×1 vectors,vi, represent the effective
angle-delay signatures associated with thei-th independent
transmitted bitβ̃i. Due to the coherent angle-delay focussing
in source-channel matching we have the following relation
betweenvi andqi

‖vi‖2 ≈ Kcoh‖qi‖2 ≈ K2
coh (45)

where the approximations are exact in the ideal case. In the
ideal case, theK×1 high-resolution signatureqi consists of
all zeros exceptKcoh ones in the coordinates corresponding
to thei-th group of sensors (and corresponding MF outputs).
On the other hand, the “focussed”Kind × 1 signaturevi

consists of all zeros except a non-zero entry of sizeKcoh

in the coordinate corresponding to thei-th group of sensors;
the increase in magnitude of the non-zero entry is due to
the phase-coherent transmissions fromKcoh sensors in the
group (see Fig. 6(b)).

The receivers at the WIR for matched source-channel
communication can be designed using the system equa-
tion (43). In particular, the simplest receiver correspond-

ing to angle-delay matched filtering is given byˆ̃β =



sign
{

Re
(

V Hzsc

)}

and thePe,sc(i) associated with the

i-th bit can be estimated viaSINR(i) as in (31) where
the expression forSINR(i) is given by (33) by replacing
{qi} with {vi}. Similarly, the MMSE receiver is given by
ˆ̃
β = sign {Re (Lsc,mmsezsc)} where theKind×Kind matrix
Lsc,mmse is given by

Lsc,mmse = arg min
L

E[‖Lzsc − β̃‖2] = V HR−1
sc (46)

whereRsc = E[zscz
H
sc] = MEV V H + σ2I. ThePe of the

MMSE receiver can be approximated again using the SINR
as in (42)) by replacing{qi} with {vi} andR with Rsc.

The expression forPe in the ideal case provides a good
reference to compare the performance of matched source-
channel communication relative to information retrieval at
the highest resolution

Pe,sc,ideal = Q





√

2ME
σ2

(
K

Kind

)2


 = Q

(√

2MEK2
coh

σ2

)

.

(47)
Comparing the above equation with (34) we note that source-
channel matching affords an SNR gain ofKcoh compared to
information retrieval at the highest resolution.

A. Numerical Results

We now present numerical results to illustrate the perfor-
mance of information retrieval with source-channel matching
in AWS. The simulation set up is the same as in Sec. IV-C.
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Fig. 8. Pe vs. SNR plots for an AWS sytem using source-channel matching
with Kind bits retrieved in each channel use.

The probability of errorPe as a function of the transmit
SNR (per sensor) for the source-channel matched configura-
tion is shown in Fig. 8. Note that although thePe behavior
is similar to that of the maximum resolution setup, the SNR
required to attain a desiredPe is substantially reduced due to
the Kcoh SNR gain. Non-ideal detection again incurs a loss
in SNR and also exhibits aPe floor due to interference as
was the case in Fig. 4. However the performance is near-ideal
with interference suppression.

Fig. 9 illustrates the performance gains due to source-
channel matching. Even in the practical (non-ideal) scenario,
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Fig. 9. Comparison of AWS performance at the maximum resolution and
that with source-channel matching. Non-IdealPe curves with interference
suppression.

source channel matching provides a gain of approximately
10 log(Kcoh) dB compared to information retrieval at the
maximum resolution. For example, whenKind = 6 ⇒
Kcoh = 18, the Pe curves are spaced by about12dB. For
a constantK, decreasingKind increasesKcoh and hence
the gain due to source channel matching is even more
pronounced for smaller values ofKind.

VI. SENSING CAPACITY

Thus far we have analyzed the performance of AWS for
uncoded coherent BPSK transmissions from the sensors. In
this section, we discusses the notion of sensing capacity in
AWS that may be attained via coded transmissions from the
sensors. Furthermore, we address the following question:
for a given per-sensor SNR, what is the optimal sensing
configuration (value ofKind) that maximizes the sensing
capacity? As we will see, the answer in the case of source-
channel matching is surprising.

For each canonical configuration,Kind parallel channels
are established between the sensor ensemble and the WIR.
For any given configuration, the sensing capacity can be
approximated by using the SINR per parallel channel

C (Kind) ≈
L

TW

Kind∑

i=1

log2 (1 + SINR(i)) bps/Hz (48)

where the factorL/(TW ) reflects the fraction of temporal
dimensions used for establishing the parallel channels. The
above expression can be used for information retrieval at the
highest resolution or with source-channel matching as well
as with or without interference suppression by plugging in
the appropriate expression forSINR(i).

We are particularly interested in studying the impact of
source-channel matching on sensing capacity. Thus, we focus
on the ideal case to get insight so thatSINR → SNR and its
the same for all parallel channels. Furthermore, the capacity
expression in this case is exact rather than an approximation
and corresponds to the capacity ofKind parallel AWGN



channels, each operating at the sameSNR. In the case of
information retrieval at the highest resolution we have

Cideal (Kind) =
LKind

TW
log2

(

1 +
ME
σ2

K

Kind

)

(49)

whereas in the case of source-channel matching we have

Csc,ideal (Kind) =
LKind

TW
log2

(

1 +
ME
σ2

(
K

Kind

)2
)

(50)
which reflects an SNR gain ofKcoh per parallel channel
compared to maximum resolution information retrieval.
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Fig. 10. Ideal sensing capacity as a function of transmit SNR per sensor for
different values ofKind. (a) Information retrieval at maximum resolution.
(b) Information retrieval with source-channel matching.

From (49) we note that the ideal sensing capacity is a
monotonic function ofKind for information retrieval at the
highest resolution. This is illustrated in Fig. 10(a) wherethe
capacity is plotted as a function of transmit SNR per sensor,
ρsensor = E/σ2, for different values ofKind. As evident,
at high SNR’s, the capacity is maximum forKind = K and
minimum for Kind = 1. On the other hand, this increase
in capacity withKind diminishes at low SNR’s where the
curves for the two extremes coincide.

Fig. 10(b) plots the ideal sensing capacity as a function
of ρsen for source-channel matching for different values of
Kind. In this case, the capacity is not a monotonic function
of ρsen. At high SNR’s, theKind = K configuration yields
the highest capacity, as before. However, at low SNR’s,
the Kind = 1 configuration yields the highest capacity.
Most importantly, at everyρsen there is an optimum sensing
configuration,Kopt(ρsen), that yields the highest capacity.
In particular, the configurationKind =

√
K is a robust

choice whose capacity remains between the extreme cases of
Kind = K andKind = 1. In fact, the expression forCsc,ideal

reveals a fundamentalmultiplexing gain versus received SNR
tradeoff that we had also identified recently in the context
of MIMO communication over sparse multipath channels
[6]: increasing the multiplexing gain (Kind) comes at the
cost of decreasing the received SNR per parallel channel,
ρrx = Mρsen(K/Kind)

2, and vice versa. The optimal
configuration at anyρsen optimizes this tradeoff to yield the
highest capacity. Using the results of [6], we can characterize
the optimal configuration, for any operatingρsen, as

Ksc,opt(ρsen) ≈







1 , ρsen ≤ ρlow = 4
MK2√

MρsenK
2 , ρsen ∈ (ρlow, ρhigh)
K , ρsen ≥ ρhigh = 4

M
(51)

Fig. 10(b) also shows the capacity of an equivalent AWGN
channel with the total transmit SNRρtotal = ρsenMK
reflecting the situation in which a single sensor (a fusion
node) transmits the data using the total power used by
the entire network ofK nodes. As evident, source-channel
matching affords the maximum multiplexing gain over the
AWGN capacity over the entire SNR range, reflecting the
K-fold distributed MIMO gain in source-channel matching.
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