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Optimal Antenna Diversity Signaling for Wide-Band
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Abstract—Optimal multi-antenna wide-band signaling schemes
are derived for multipath channels assuming perfect channel state
information at the transmitter. The scheme that minimizes the bit-
error probability in the single-user case is a rank-one space–time
beamformer which focuses the signal transmission in the direc-
tion of the most dominant channel mode. Several suboptimal vari-
ations are discussed for multiuser applications. The optimal sig-
naling scheme given channel statistics at the transmitter is also de-
rived. The optimal scheme in this case is a full-rank space–time
beamformer that transmits on all channel modes. Analysis and
simulation results are used to compare the schemes proposed in
this paper. Finally, we discuss the optimal signaling scheme when a
delayed version of the channel state is available at the transmitter.
It is shown that in this case the optimal scheme is a rank-1 beam-
former when the channel variations are sufficiently slow and is a
full rank beamformer in a sufficiently fast fading channel.

Index Terms—Antenna arrays, diversity signaling, feedback,
multipath, spread spectrum communication systems, transmit
beamforming.

I. INTRODUCTION

SPATIO-TEMPORAL diversity, combining multiple an-
tennas and temporal signaling, has emerged as a key

technology in state-of-the-art systems. For example, an antenna
array is required at the base station in the third-generation
WCDMA standard [1]. Receive and transmit antenna diversity
are utilized for uplink and downlink applications, respectively.
In receive diversity, multiple copies of the transmitted data
are processed to combat channel fading. Transmit diversity,
on the other hand, utilizes a predesigned signaling scheme
to send multiple copies of the data for the same purpose.
Use of antenna arrays at both the base station and mobile is
envisioned in future wireless communication systems [2]. In
this case, transmit and receive diversity techniques can be used
simultaneously to enhance system performance.

The use of time-division duplexing, where uplink and down-
link transmission are interleaved in time, as well as feedback
channels for frequency-division duplexing, allow the transmitter
to obtain channel information. This information can be used
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to design an efficient signaling scheme at the transmitter. Sev-
eral methods for transmit signal design using channel informa-
tion are found throughout the literature. For example, a filter-
bank-based scheme for maximizing data rate in multicarrier sys-
tems is described in [3]. The use of channel side information
(CSI) at the transmitter for narrow-band systems is discussed in
[4]. Block signaling design to achieve maximum signal-to-noise
ratio (SNR) and diversity gain for flat fading channels can be
found in [5] and [6].

This paper focuses on the design of optimal diversity sig-
naling schemes that minimize the bit error rate (BER) given CSI
at the transmitter. We show that when perfect channel state infor-
mation is available, the BER-optimal solution is characterized
by a rank-1 structure: the same signature code is transmitted
through each antenna and weighted according to the channel
state. For a single-path channel, we show that the signature code
is arbitrary and the optimal antenna weights focus the transmis-
sion at the most dominant spatial channel mode. For a mul-
tipath channel, however, we show that the optimal signature
code is a discrete-time sinusoid with frequency equal to the
channel frequency having maximum gain. This optimal scheme
can be viewed as adaptive frequency hopping with spatial beam-
forming. A beamforming solution for flat fading channels was
also suggested in [4] and [7] when perfect or sufficiently accu-
rate CSI is available at the transmitter.

In multiuser scenarios, strictly enforcing optimality for each
user may result in two or more users having the same maxi-
mizing frequency and hence the same signature code at a par-
ticular instant. One way to resolve this problem is to use the
subdominant frequencies for other users having the same maxi-
mizing frequency as the first user. Another alternative approach
is to assign distinct fixed signature codes to different users.
Then, beamformer weights are chosen to minimize the BER for
each user given the sub-optimal code. We term this structure the
suboptimal beamforming (space-only optimization) scheme.

When only channel statistics are available at the transmitter,
we show that BER is minimized by transmitting over all
the channel modes. For a given statistics, distinct linearly
independent signature codes are chosen for different transmit
antennas to minimize the average BER. Similar results can be
found in [8]. This structure is termed the multicode scheme,
which is related to the block signaling scheme in [5]. We
also analyze the effect of delayed channel state information
at the transmitter and demonstrate that the BER-optimal
solution deviates from the rank-1 scheme and is analogous to a
multicode scheme when the channel fading is sufficiently fast
relative to the delay. Previous work related to this issue can be
found in [7], where analytical comparison between rank-one
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beamforming (termed closed-loop transmit diversity) and a
multicode (termed open-loop transmit diversity) scheme in the
presence of delay was given. Similar conclusions were reached
regarding the best scheme given the channel fading rate.

The rest of the paper is organized as follows. The channel
model is outlined in Section II, followed by BER analysis for
the coherent receiver in Section III. Diversity signaling design
given perfect CSI is discussed in Section IV. Section V covers
signaling design when only the channel statistics are available.
The optimal scheme given delayed channel state information is
discussed in Section VI. Analysis and simulation comparing dif-
ferent schemes are given in Section VII, followed by concluding
remarks in Section VIII.

We use the following notation. Superscripts, , and in-
dicate matrix transpose, matrix conjugate transpose, and com-
plex conjugation, respectively. Uppercase boldface denotes a
matrix while lowercase boldface indicates a vector.denotes
the identity matrix. denotes a complex
circular Gaussian vector with mean and covariance ma-
trix . Expectation is denoted as Eand the Euclidean norm
of vector is denoted as . The symbol denotes the Kro-
necker product and vec is formed by stacking the columns
of matrix into a vector [9], [10]. is the column vector

with 1 located in the th row. The diagonal matrix
generated by the vector is denoted by . The max-
imum eigenvalue and the corresponding eigenvector of matrix

is denoted by and , respectively. The fol-
lowing assumptions are used.

1) The systems operate in a Rayleigh fading channel [11].
We primarily consider single-user systems. The results
also apply to multiuser systems in which multiuser inter-
ference can be approximated as white noise.

2) Noise-free measurements of channel coefficients and
multipath delays are available at the transmitter and
receiver.

II. CHANNEL AND SIGNAL MODEL

Consider a system with transmit and receive antennas.
The transmitted signal undergoes a frequency selec-
tive -input, -output fading channel with delay spread of.
The signal at the -th receive antenna can be written as

(1)

where is the signal transmitted via theth antenna
and is the channel impulse response representing
the coupling between theth transmit th receive antenna.
We assume that the additive noise process is temporally
and spatially white zero mean complex Gaussian. That is,
E .

In this paper, we focus on utilizing the available spatio-tem-
poral degrees of freedom for diversity only—that is, a single
bit stream is transmitted on all antennas. Thus, ,

, where is the data symbol transmitted

over all the elements within 1 symbol duration and
, where is the th transmit

antenna signature waveform. For direct sequence wide-band
systems, is the waveform corresponding to theth
element length signature code . Let denote the
(two-sided) signal bandwidth. Analogous to a direct-sequence
spread spectrum system, we represent as

(2)

where and is a unit-energy waveform of duration
. We sample at the rate to enable discrete-time

processing without loss of information. Let

(3)

Hence, contains samples of the received signal at theth an-
tenna over one symbol duration, whileis an matrix
containing the signature codes from all transmit antennas. Now,
define as the time-shift matrix corresponding
to the path delay . We assume the delay is cyclic, so that

is circulant. For example, when and ,

. While the actual delay corresponds to

a linear shift, negligible error is introduced by this assump-
tion for sufficiently large provided that . Further-
more, if achip-levelcyclic prefix is introduced, the cyclic shift
is exact [11]. Since is essentially bandlimited to , it suf-
fices to look at the sampled version of the channel impulse re-
sponses at , . By defining

, ,
, vec ,

and vec , we have from
(1) and (2)

(4)

where .

III. COHERENTRECEIVER

For simplicity, consider coherent BPSK modulation
( ) over a wide-band multipath channel with

. Here denotes the energy in one symbol.
Hence, intersymbol interference (ISI) is negligible and
symbol-by-symbol detection suffices. The channel state is
assumed to be constant within a symbol duration (slow fading).
The maximum likelihood detector [11] in this case is

(5)
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where is the coherent test statistic corresponding to theth
receive antenna obtained from matched filtering and maximum
ratio combining. Using (4), can be written as

(6)

where is an estimate of the channel coefficient vector.

A. BER Analysis

Assuming perfect estimates of channel coefficients
and multipath delays at the receiver, substitution of (4)
into (6) gives

(7)

Given and assuming equally likely symbols, thein-
stantaneousBER corresponding to (5) is1

(8)

where

(9)

is the received SNR gain. The instantaneous BER assesses the
system performance for a particular channel realization. The av-
erage BER reflects the system performance over a longer time
scale and is defined as E BER , where
the expectation is taken over all possible channel realizations.
Either the instantaneous or average BER will be used to design
the diversity signaling scheme, depending upon the nature of the
CSI available at the transmitter.

IV. DIVERSITY SIGNALING GIVEN CHANNEL STATES

In this section, we discuss the design of signature codes
(see Fig. 1) to minimize BER given the

knowledge of channel states . In practice, estimates of
channel states may be available at the transmitter either via a
feedback channel or indirect measurement. A feedback channel
from the receiver to the transmitter is used in frequency-divi-
sion duplexing (FDD) systems. Indirect channel measurement
is applicable in time-division duplexing (TDD) since the
uplink and downlink channels are identical. Provided that the
switching time between uplink and downlink is significantly
smaller than channel coherence time, accurate measurement

1Q(x) = (1=
p
2�) e du.

Fig. 1. Diversity signaling considered in this paper.

can be obtained. In this section, we assume that channel states
are perfectly known at the transmitter. The optimal signaling
scheme is derived for a general multi-antenna system in an

-path channel. A variation of the optimal scheme that provides
more flexibility for multi-access scenarios is also given.

A. The Optimal Diversity Signaling Scheme: Rank-1
Space–Time Beamformer (Space-Time Optimization)

We are interested in finding the signature code matrixthat
minimizes the instantaneous BER given . Combining
(8) and (7) and using the fact that is decreasing with ,
the optimal solves

(10)

where the trace constraint ensures that sum of energy in all
codes is unity. The optimum solutionis found as follows. Let

such that vec and
vec . Note that trace vec vec

. Applying the identity vec vec
twice [9], we have

vec (11)

Hence, defining vec , we may write
(10) as (12), shown at the bottom of the next page. The solution
in (12) is unique up to a multiplicative factor.

Valuable insight to nature of the solution to (12) is obtained
by considering the single- and multiple-path cases separately.

Theorem 1: For a single-path ( ) channel, the optimal
set of signature codes is , , where

is any unit-norm length-N signature code and

(13)

(12)
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Fig. 2. The optimal diversity signaling structure given the channel states:
common signature code for all antennasc followed by a beamformerw.

Proof: For a single-path channel,
. Also, . Hence,

where the second equality follows from the eigenstructure of
Kronecker product [9]. The proof is completed by noting that
any length- unit-norm vector is an eigenvector of .

The instantaneous BER obtained using the signature codes in
Theorem 1 is

As depicted in Fig. 2, all the transmit antennas share the
samelength- signature code followed by the beamformer

. Thus, the optimal diversity signaling scheme is
decomposed into temporal and spatial elements, represented by

and , respectively. The signature codeis arbitrary since
the channel is frequency-independent for . This allows
different signature codes to be assigned to different users to
minimize multi-acess interference and each user separately
computes its optimum beamformer based upon the most recent
channel states. The single path model may be applicable to a
multi-antenna OFDM system in which the channel associated
with each subcarrier is frequency-nonselective.

For a multipath channel ( ), the optimal solution given
in (12) can be further simplified by exploiting the circulant prop-
erty of , which results in the following theorem.

Theorem 2: For a multipath channel ( ), the optimal set
of signature codes is , , where

(14)

(15)

(16)

... (17)

Proof: See Appendix A.
The techniques we apply to obtain the optimal solution are

similar to those used in [12] to derive a space–time channel
(block) diagonalization. Notice that theth element of is
the complex conjugate of the frequency response of the channel
between the th receive and th transmit antenna at frequency

. Also, for , simplifies to , where
. Lastly we observe that the distinct

signature codes generated by all possible values ofare or-
thogonal.

The optimum solution in Theorem 2 results in the minimum
instantaneous BER

BER (18)

with and given in (15) and (17), respectively. In a
frequency-selective channel, the minimum BER is obtained
by transmitting the signal at the (discretized) frequency corre-
sponding to the maximum channel gain. This is reflected in the
choice of signature code. Note that, at any particular instant,
the transmission is focused to a particular frequency within the
available bandwidth. However, over longer time intervals where
the channel state varies significantly, the transmitted signal is
likely to traverse the entire bandwidth. Once the maximizing
frequency is chosen, the spatial beamformerfocuses the
signal on the dominant spatial channel mode at that frequency
to minimize instantaneous BER. We term this structure the
optimal space–time beamforming scheme. In essence, focusing
the transmission to the dominant spatio-temporal channel
mode is a generalization of selection diversity. We note that the
space–time signaling structure depicted in Fig. 2 applies to both
the optimal solutions in Theorem 1 ( ) and 2 ( ). For

, is arbitrary.

B. Suboptimal Beamforming Scheme (Space-Only
Optimization)

In some cases, one may be restricted to use a suboptimal
temporal signature code. An example of such situation is in
multi-user scenario, where strictly enforcing optimality for each
user may result in two or more users having the same maxi-
mizing frequency and hence signature codeat a particular
instant. One way to resolve this problem is to use subdominant
frequencies for other users that have the same maximizing fre-
quency as the first user. This approach does not result in mul-
tiuser interference (MUI) even in frequency-selective channels.
However, it requires coordination among users and temporal
signaling for each user must be adapted based on the channel
state information.

In practical CDMA systems, Gold or Walsh–Hadamard codes
are used for temporal (user-specific) signature codes. Here, one
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is restricted to use a fixed suboptimal codein frequency se-
lective channels. In this case, CSI can still be used to perform
space-only optimization. Given, the spatial beamformer
is chosen to minimize the BER. In this case, in (10) can
be written as , where the optimization is performed over

. Analogous to (11), we have

vec

(19)

where the last equality follows from Identity 2 at the end of Ap-
pendix A. From (10) and (19), the optimal spatial beamformer
given the signature codeis given by (20), shown at the bottom
of the page, and the resulting instantaneous BER can be written
as shown at the bottom of the page. For a single-path channel,
the performance of this suboptimal scheme is identical to the
optimal one since the optimal signature codeis arbitrary, as
shown in Theorem 1. Note that the above analysis and optimiza-
tion ignore MUI, which in general exists when spreading codes
such as Gold or Walsh–Hadamard are used in frequency-selec-
tive channels. Hence, the solution in (20) only minimizes the
single-userperformance bound of the system. This serves as a
good approximation when the number of users and spreading
gain are large and/or power control is used, as MUI can be ap-
proximated as additional Gaussian noise [13]. In general, when
a multiuser detector is used, the optimal spatial beamformer de-
pends on the type of multiuser detector. This problem is beyond
the scope of this paper.

V. DIVERSITY SIGNALING GIVEN CHANNEL STATISTICS

When only channel statistics are available at the transmitter,
the appropriate performance measure is theaverage BER.
For Rayleigh fading channels, the second-order statistics
completely characterize the channel. The advantage of using
channel statistics is that they vary much slower in time than the
channel states and thus can be measured more accurately at the
transmitter in the TDD case, or require less frequent feedback
in the FDD case.

To obtain an analytical expression for the average BER, it is
useful to write in (8) as , where

. For Rayleigh fading, ,
where is the channel covariance matrix. Assuming that no
pair of channel coefficients are completely correlated and no
channel coefficient has zero energy, is positive definite. It
can be shown via KL expansion [14] forthat

E

E

E (21)

where are the eigenvalues of the matrix

. Since is nonnegative definite and Hermitian
symmetric, it follows that is nonnegative definite. Using the
identity [15], it
can be shown that

(22)

Notice that the eigenvalues of depend upon the channel co-
variance matrix and the signature waveform correlation struc-
ture . Since is fixed, we choose such that minimizes
(22). The following theorem addresses this issue.

Theorem 3: Under the constraint trace , where is
a constant, is a sufficient condition to
minimize the average BER in (22).

Proof: See Appendix B.
This is consistent with the fact that maximum diversity gain is

obtained when all independent diversity channels have the same
average energy [11]. The constraint trace maintains
the average received power constant.

The above theorem suggests that, to minimize BER, the set
of signature codes should be chosen such that

(23)

Without loss of generality, we choose . Since
is positive-definite and hence nonsingular, it can be inferred
from (23) that the optimal code correlation matrixmust be

(20)

BER
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nonsingular. Hence, from (7), it is easy to see thatmust be
full column rank, unlike the optimal rank-one solution for
when CSI is available ( ). This implies that, when only
channel statistics are available at the transmitter, the signature
codes used for different transmit antennas should be linearly in-
dependent. We refer to this particular structure as themulticode
scheme. Similar idea of signaling design based upon the channel
statistics can be found in [8].

When all the channel coefficients are independent and
identically distributed (i.i.d.) so that , the
problem is reduced to choosingsuch that .
For a single-path channel, any set of orthogonal codes can
be used, such as Walsh–Hadamard codes. However, for a
multipath channel ( ), the code correlation matrix
resulting from Walsh–Hadamard codes is quite different from

. A set of Gold sequences is one choice that results
in [11]. Hence, choosing to be a set of Gold
sequences will result in near-optimal performance.

Since some channel coefficients can be correlated or have
different average energy, the channel covariance matrixcan
be any Hermitian positive definite matrix. In this
case, using codes that result in may result in
performance loss compared to the optimal codes. In many cases,
there is no set of codesthat satisfy (23) exactly. A special case
when an exact solution exists is when since for any

semi-unitary matrix and Hermitian and positive
definite, we may write . Hence, since

(24)

satisfies the optimality condition in (23).

VI. OPTIMAL SCHEME GIVEN DELAYED CHANNEL STATES

The results in Section IV assume that the CSI at the trans-
mitter is perfect. However, in practical systems, some nonide-
alities may exist. For instance, both FDD and TDD provide de-
layed versions of the channel state at the transmitter. In addition,
for FDD systems, CSI is quantized and suffers from feedback
bit error. Delay is by far the most prominent nonideality since
sufficiently fine quantization and low error rate feedback chan-
nels can be used. In this section, we discuss optimal signaling
given a delayed version of the channel state. A comparison be-
tween multicode and beamforming schemes in the presence of
delay is given in [7] using average BER. Codebook optimiza-
tion for single path, single receive antenna systems based upon
the average received SNR gain and mutual information given
nonideal CSI is reported in [4].

We use the Markov (AR-1) model used in [7] for channel state
evolution. Define as the delayed version of and we as-
sume that evolve independently. Then, for ,

, , we have

E E

(25)

where , denotes the zeroth-order Bessel
function of the first kind, is the channel Doppler spread,
and is the amount of delay. The parameterrepresents the
channel fading rate. As the fading rate increases,decreases
and the correlation between and decreases.

To obtain an optimal signaling scheme, we use two criteria:
maximize the expected SNR gain, E with defined
in (9) and minimize the expected BER, EBER . Due to
the effect of delay, maximizing E is not in general
equivalent to minimizing EBER .

The solution to maximization of expected SNR gain is similar
to the ideal case in Section IV-A. Substituting for
into (12), it can be shown that the optimal solution is

E

Using the techniques shown in Appendix A, this solution can be
expressed in the form given in Theorem 2 by defining

E

...

... (26)

This result demonstrates that the rank-1 beamformer structure
maximizes E given the delayed channel state. How-
ever, the rank-1 beamformer structure does not generally mini-
mize EBER .

Exact minimization of EBER over is not
tractable. Hence, we develop some insight by considering a

system and minimize the Chernoff upper bound
BER [11]. Here
and we assume i.i.d. fading across all transmit antennas:
E , where is the channel coefficient vari-
ance. This implies that given the delayed channel state,

. Minimization of the Chernoff upper bound
under these conditions is discussed in detail in Appendix C. In
particular, we derive a closed-form solution for . It is
shown in Appendix C that the optimal signature code matrix
for is

(27)

(28)

where and are orthonormal vectors, , and
. The coefficient is given in (38) in Ap-

pendix C. When , represents the beamforming solu-
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Fig. 3. The optimal� for P = 2, Q = 1, andL = 1 as a function of� for
different values ofE=� with khk = � = 1.

tion depicted in Fig. 2. On the other hand, indicates
a multicode solution as is of rank 2. Notice that the rank 2

is a perturbation from the beamforming solution .
This perturbation is needed to achieve optimality due to the un-
certainty in the most dominant channel mode derived from the
delayed channel state. The value of in (28) is depicted in
Fig. 3 as a function of for various values of while fixing

and . Observe that the rank-one beamforming
solution becomes optimal at smaller values of(faster fading)
as is decreased.

VII. COMPARISON AND EXAMPLES

It is shown in Section IV-B that the suboptimal beamforming
(space-only optimized) scheme is inferior to the optimal
(space–time optimized) scheme when CSI is available at the
transmitter. Also, for single path channel, it is shown that the
optimal scheme coincides with the suboptimal scheme.

In this section we first demonstrate that the suboptimal beam-
forming scheme in Section IV-B based on CSI is superior to the
multicode scheme. This is intuitively satisfying since channel
states convey more information about the channel than channel
statistics. For simplicity, assume that and

for the suboptimal beamforming scheme (29)

for the multicode scheme (30)

These conditions result in the same transmitted signal energy.
For the multicode scheme, (30) results in minimum as
it satistifies the optimality condition given in (23). The condi-
tion (29) for the signature codein the suboptimal beamforming
scheme indicates thathas the same autocorrelation character-
istics as the codes in the multicode scheme. By the convolution
theorem, it also indicates thathas an all-pass frequency re-
sponse, in contrast to the optimal solution implied by Theorem

1. Let and be SNR gain as defined in (9) for (29)
and (30), respectively. Then, from (20), we have

trace

This demonstrates that the best multicode scheme cannot outper-
form the suboptimumbeamforming scheme. Hence, usingCSI to
optimizeonlythespatialbeamformerisstillbeneficial.Moreover,
for a system with one receive antenna in a single-path channel
( ), and .
This indicates a (10 ) dB SNR gain for the suboptimal
beamforming over the multicode scheme.

We next compare the optimal beamforming, suboptimal
beamforming, and multicode schemes for a system with
different values of and and . Binary Gold codes
are used for one of the suboptimal beamforming and multicode
schemes. The correlation properties of binary Gold codes are
such that (29) and (30) are closely approximated [11]. The
simulated channel is Rayleigh fading with .
The average BER curves are depicted in Fig. 4(a)–(d). Observe
that, for [Fig. 4(a) and (b)], the suboptimal beamforming
scheme coincides with the optimal one. Also, the gain of
the optimal beamforming scheme relative to the suboptimal
scheme is more pronounced as the number of pathsincreases.
This gain is obtained due to the spectral focusing of energy in
the frequency selective channel as discussed in Section IV-A.
The suboptimal scheme only focuses spatially. For
and 4, we choose and , respectively.
The suboptimal beamforming schemes utilize the Gold code,
the second and the fourth dominant frequencies. Fig. 4(c)–(d)
show that the schemes which use subdominant frequencies still
outperform the one using the Gold code. The loss associated
with use of subdominant frequencies seems to be negligible,
yet more pronounced for a larger number of paths. This is
because frequency selectivity increases with the number of
paths .

As an example of signaling design given the channel statis-
tics, we choose a , system in a singlepath channel
( ) with channel statistics

(31)

Here, is the correlation between 2 channel
coefficients and and represents the en-
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(a) (b)

(c) (d)

Fig. 4. Average BER comparison for optimal beamforming, sub-optimal beamforming and multicode forP = 2 and various values ofQ andL. Gold codes are
used for the multicode and one of the sub-optimal beamforming schemes. (a)Q = 1,L = 1. (b)Q = 2,L = 1. (c)Q = 1,L = 2. (d)Q = 1,L = 4.

ergy difference between and . Decomposing as the
product of an upper and lower triangular matrix and applying
(24) gives

where form an orthonormal set. Fig. 5 shows
BER of the optimal multicode and Walsh–Hadamard based
multicode schemes ( ) with . In this case,
the performance of the optimal scheme does not depend upon
and since (23) is satisfied exactly independent ofand . As
evident, the performance gain of the optimal scheme becomes
more significant as and/or increase.

To illustrate signature code design given the channel statistics
for a multipath channel, we consider with ,
. We model the channel covariance matrix as

Fig. 5. Average BER comparison between the optimal and orthogonal
multicode schemes forP = 2, Q = L = 1. Various values of� andc are
used.

where is given in (31). The parameters and rep-
resent the energy difference and correlation between two paths.
The code length is set to be 31. We choose
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and such that the optimality condition (23) cannot
be satisfied. The above model forassumes that two different
paths share the same spatial channel characteristic. Since the op-
timal multicode scheme satisfying (23) is unknown, we employ
a solution that approximately satisfies (23) by solving the fol-
lowing equation numerically:

(32)

where and denotes
the Frobenius norm [10]. The average BER of the optimal and
Gold-sequence based multicode schemes are shown in Fig. 6.
Observe that the optimal multicode outperforms the Gold-based
multicode by 1.5-dB at BER . The results with

represents an unattainable BER lower bound, which
is shown only for comparison.

To illustrate the results obtained in Section VI when delayed
channel states are used, we compare the performance of the op-
timal solution in (27) to the beamforming (rank-1) and mul-
ticode schemes with , . The multicode
scheme consists of the two length-32 Walsh-Hadamard codes
for two transmit antennas. The simulated average BER for

are depicted in Fig. 7(a)–(c)2 . Observe that for all
fading rates, the performance of the optimal solution tends to
coincide with that of beamforming for small and with
multicode for higher . At moderate , beamforming
is near-optimal for low Doppler spread and multicode is near
optimal for high Doppler spread.

These results indicate that the beamforming solution is op-
timal only when the delay is small relative to the channel fading
rate or the fading is sufficiently slow, i.e., . As the
fading rate increases, the optimality of the multicode scheme
is attributed to the increase of uncertainty of the most domi-
nant channel mode. However, the rank-1 scheme is always better
when is small. It is reasonable to expect that this claim
also holds for and . Furthermore, for other
types of nonidealities, beamforming solution is perceived to be
optimal when the nonidealities are sufficiently mild. This con-
clusion is similar to the results in [4].

VIII. C ONCLUSION

The design of diversity signaling schemes that use CSI at
the transmitter is investigated. The channel side information
is either the channel state or the channel statistics. It is shown
that when perfect channel state information is available at
the transmitter, the BER-minimizing scheme consists of a
common signature code for all transmit antennas, followed
by a beamformer which focuses the transmission to the most
dominant spatio-temporal channel mode at any particular
instant (the space-time optimized scheme). The optimal
space-time beamformer scheme can be efficiently implemented

2For 0.667-ms delay (1 slot in WCDMA [1]),� = 0:95; 0:8; 0:6 correspond
to Doppler spreads of 107, 219 319 Hz (� 58, 118, 172 kmph at 2 GHz center
frequency), respectively.

Fig. 6. Average BER comparison between the optimal and orthogonal
multicode schemes forP = L = 2, Q = 1. We use� = � = 0:5 and
c = c = 0:5. The results with� = I =4 represent an unattainable BER
lower bound, which is shown only for comparison.

using IDFT-DFT bank as in multicarrier systems, followed
by an adaptive array. The beamformer computation involves a
DFT and finding the most dominant eigenvector of a
matrix. When the temporal signature code is fixed, the CSI
can still be used to perform space-only optimization. When
only the channel statistics are available at the transmitter, the
BER-minimizing solution suggests that the signal should be
transmitted throughout all the channel modes to combat the
effects of fading. This is done by utilizing a set of linearly
independent signature codes for the transmitter array that match
the channel statistics so as to provide independent and identical
fading subchannels (the multicode scheme). Finally, we discuss
signaling design based upon delayed channel state information.
It is demonstrated that the BER-minimizing scheme is a rank-1
space-time beamformer for lower fading rates and a multicode
scheme for high fading rates.

When CSI is available at the transmitter, the solution pre-
sented in this paper (space–time or space-only optimization) re-
quires the computation of the dominant eigenvector of
matrices. When , a closed-form solution is possible. For a
relatively small , numerical techniques such as power method
and its variants [14], which compute only the dominant eigen-
vector can be utilized to provide the solution in a reasonable
amount of time. When is large, more sophisticated algorithms
may be needed.

APPENDIX A
PROOF OFTHEOREM 2

Since is circulant, , where
is the -DFT matrix and [14]

since is the first column of . Define the matrix
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(a) (b)

(c)

Fig. 7. Average BER comparison for optimal diversity scheme, beamforming and multicode schemes forP = 2, Q = L = 1 when the delayed channel state
is used at the transmitter. (a)� = 0:95. (b) � = 0:8. (c) � = 0:6.

. Then

(33)

where the last equality in (33) follows from the identity
. Hence,

...
...

...

The matrix can be rearranged into a block diag-
onal matrix as follows:

...

where , is the ( )
unitary permutation matrix defined in [9] and is given in
(17). Similar block diagonalization technique has been used in
[12]. Thus,
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To complete the proof, we need the following two basic lemmas
from linear algebra.

Lemma 1: Let , be matrices and be unitary.
Let . Then .

Lemma 2: Let ... be a block diag-

onal matrix where . Then,
, where .

Applying Lemma 1, 2 and the fact that is
unitary, we have

where the second and third equalities follow from the following
identities [9].

1) For any , , ,
, .

2)

APPENDIX B
PROOF OFTHEOREM 3

Let , and

. The constant trace con-
straint trace is equivalent to . We seek
to solve the following optimization problem:

s.t.

Note that . If the opti-
mizer does not depend on , it follows that is
minimized at . Notice that is trivially concave in

.
This problem can be solved using Lagrange multiplier tech-

niques. We form the Lagrangian and its partial derivatives

(34)

Setting all the partial derivates in (34) to 0, we have

(35)

This implies is independent of and thus
. Enforcing the constraint we have

for . It is easy to check
that this solution satisfies Kuhn–Tucker optimality condition.

APPENDIX C
MINIMIZING E

Applying the eigendecomposition
where and defining

, it can be shown that

E

E

where denotes a noncentral chi-squared distributed
random variable with degrees of freedom and noncentrality
parameter . Note that for any unitary matrix , there
exists parameters , , and
angles such that

(36)

Using the above parametrization and the generating function of
the noncentral chi-squared random variable [11], we have

E

Notice that the phase angles are immaterial. Hence,
the optimization problem is reduced to finding nonnega-
tive parameters such that ,

and is minimized. Note that once
the optimal are obtained, the optimum
signature code matrix is , where is any
semi-unitary matrix, and is
chosen to satisfy (36).

For , let and . Let .
Then, we have

(37)
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(38)

By symmetry, we only need to consider ,
. The denominator in (37) is independent ofand the

numerator can be written as shown at the top of the page. Ob-
serve that for . This shows that the min-
imum of occurs at . Then, it follows from (36) that

where .
Now, let with . That is,

Then, the optimization problem is reduced to finding
. The first derivative condition implies

that the critical points of satisfy ,
where

It is easy to show that the larger root of this equation is defined
as in (38), shown at the top of the page. It can be shown (by the
second derivative test) that is concave and is a global
maximum. Since

it follows that . The solution in (28) follows
from enforcing the constraint and using the fact
that is strictly increasing within .
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