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Abstract—In this paper, we revisit the problem of signal
detection in multipath scattering. Specifically, we explore the
effect of bandwidth and signaling duration on non-coherent signal
detection in doubly dispersive non-uniform multipath scattering
environments. In such environments, we conjecture that detection
performance is optimized if two conditions are met: C1) the
number of independent degrees of freedom induced by the
transmit signal on the channel is approximately SNR/2, and C2)
the variance of the channel coefficients (each corresponding to
a degree of freedom) is equal. In uniform multipath, the second
condition is inherent. In non-uniform scattering, the variance of
the channel coefficients depends on the transmit signal which
critically impacts detection performance. As such, non-uniform
doubly selective channels afford us an additional design parame-
ter; we can design packets for detection of a specific aspect ratio,
the ratio of bandwidth to signaling duration. If our packets meet
the two criteria above, numerical and analytical results indicate
detection performance is maximized. When the above conditions
cannot be met, we present an algorithm for finding the signaling
duration and bandwidth that maximize detection performance.

I. INTRODUCTION

Signal detection in multipath is not a new problem; early
work [1] as well as recent work [2], has considered detec-
tion performance in frequency selective, uniform scattering
multipath environments. In this work we consider detection
performance in doubly selective, uniform and non-uniform
scattering. Our focus is on maximizing the probability of
signal detection, viewed as an optimization over all values
of signaling duration, T , and bandwidth, W , within design
constraints. The main contribution of this work is to i) present
conditions under which detection probability is maximized, ii)
present an algorithm for achieving these conditions, and iii)
present supporting analytical and numerical results.

Figure 1 illustrates three packets used for detection. Each
packet has a different signaling duration, T , and bandwidth,
W . The area of each packet represents total resources used
by the packet - the time bandwidth product, or signal space
dimension. In a given multipath environment, what signaling
duration and bandwidth maximize detection performance? At
a high level, we pose this question as an optimization problem:

max
T,W

PD (1)

subject to PFA = constant

SNR = constant

(optional) N = constant

where PD is the probability of detection, PFA the probability
of false alarm, SNR the received signal to noise ratio, and
N = TW the time bandwidth product.

TABLE I
OPTIMAL PACKET CONFIGURATIONS

Delay Doppler Optimal Packet Configuration

I Uniform Uniform c1, c2, or c3
II Non-uniform Uniform c3

III Uniform Non-uniform c1

IV Non-uniform Non-uniform Use algorithm 1

Fig. 1. Three packets used for detection. While the time-bandwidth product
(area) of each packet is the same, the aspect ratio is different, critically
impacting detection performance. The colors of the packets correspond to
the color of the plots in Figures 5 - 9.

As we elaborate in Section II, T and W control both the
number and variance of the statistically independent degrees of
freedom (DoF) induced by the channel on the received signal.
As we increase the DoF, we have two competing effects: i)
resistance to multipath fading increases (the probability that
all channels fade simultaneously diminishes) and ii) signal to
noise ratio per DoF decreases. These competing effects result
in optimal probability of detection for some (not necessarily
unique) T and W .

Figure (2) illustrates the interaction between channel pa-
rameters, design parameters, and detection performance. For a
given multipath environment, changing the design parameters,
primarily T and W , critically impacts detection performance.



Fig. 2. Diagram showing the interaction between the channel parameters
and the system design parameters. The channel parameters as well as the
design parameters define the power of the channel coefficients – which in
turn, dictate detection performance.

As we conclude in this paper, equation (1) is optimized (PD

is maximized) if two conditions are met:

1) the number of statistically independent degrees of free-
dom induced by the transmit signal on the channel are
approximately equal to SNR

2 , and
2) the variance of the channel coefficients is equal.

Table I and Figure 1 show packet configurations that can po-
tentially achieve these criteria in different multipath scattering
environments. If the scattering environment is non-uniform
both delay and Doppler (case IV) it may not be possible
satisfy the second requirement. Under these conditions, we
present an efficient algorithm to search for the optimal packet
configuration.

Signal detection in multipath environments is an important
problem in a number of applications: non-coherent com-
munications, detection problems in sensor networks, global
positioning systems, and radar. As carrier frequencies increase,
coherent communication often becomes impractical – non-
coherent detection becomes increasingly important. Signal de-
tection in multipath arises in the so called interweave paradigm
in cognitive radio. In the interweave paradigm, unlicensed
spectrum users opportunistically use licensed spectrum when
primary transmitters are not active [3]. In order to facilitate
detection, licensed users transmit a ‘beacon’ signal to warn
that the spectrum is occupied. What type of transmit beacon
maximizes the probability of detection at a receiver? This
depends on the multipath channel - if we know the statistics
of the channel, we can design a detection packet to meet a
specification with minimal resources – or conversely, given
a resource constraint, we can design a packet to maximize
chances of detection.

The remainder of this paper is organized into 5 sections.

In Section II, we define the model for multipath channel,
the received signal, the detector, and discuss statistics that
dictate detection performance. Most importantly, we highlight
the interaction between the transmit signal and the multipath
environment. In Section III we begin with a general overview
of problem and conclusions from the work. In Section IV and
V, we explore analytical and numerical results – and how they
support the conjectures. Section VI concludes by reviewing the
most important aspects of the work.

II. SYSTEM MODEL
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Fig. 3. Illustration of the virtual channel representation. Each dot represents
a multipath component. Each square represents a delay-Doppler resolution
bin of size Δτ × Δν, corresponding to a channel coefficient, hd. L is the
number of bins in delay, while M is the number of bins in Doppler. The
channel coefficient is approximately equal to the sum of the paths in the
corresponding bin [4].

A. Virtual Channel Representation

We begin with a model for the received signal in doubly
selective multipath presented in [5] [6] [7] [2]. The model
assumes a RAKE type receiver. The D dimensional received
signal can be written as

r =
√
Eh+w (2)

where E denotes the transmit signal energy, w ∈ CD additive
gaussian noise, and h ∈ CD the D dimensional vector of
channel coefficients. The channel coefficients, {hd}, represent
the Fourier series expansion of the time varying frequency
response of the channel, H(t, f), restricted to (t, f) ∈ [0, T ]×
[−W/2,W/2]:

H(t, f) =

L∑
�=1

M−1∑
m=−(M−1)

h{�,m}ej2π
m
T te−j2π �

W f . (3)

The number of coefficients required to accurately represent
channel with a Fourier series expansion depends on the
signaling duration, T , bandwidth, W , as well as the delay
spread, τmax, and Doppler spread, νmax, of the channel as:

D = L(2M − 1) L = �Wτmax� M = �Tνmax/2� . (4)

The number of channel coefficients, D, also represents the
statistically independent degrees of freedom (DoF) induced by
the transmit signal on the multipath channel. L represents the



number of bins, or channel partitions, in delay, while 2M −
1 is the number of resolutions bins in Doppler. This can be
visualized by referencing Figure 3; as bandwidth and signaling
duration are increased, the number of bins, D, increases. A
detailed proof is given in [4], chapter 5.

We define the normalized packet aspect ratio, α, as the
ratio of bandwidth to signaling duration scaled by the channel
parameters:

α =
Wτmax

Tνmax
. (5)

When α = 1, the channel has an equal number of partitions
in delay and Doppler, thus L ≈ 2M − 1. When α is small,
the packet is long in duration and narrow in bandwidth;
conversely, if α is large, the packet is wide in bandwidth and
short in duration.

B. Statistics

As discussed in [4], by virtue of path partitioning, the
channel coefficients are distributed as independent complex
gaussian random variables:

h ∼ CN (0,Σh)

Σh = E[hhH ] = diag(σ2
1 , ..., σ

2
D) = diag(σ2). (6)

The variance of each channel coefficient, {σd}, depends on the
scattering environment and L and M . In general, the delay-
Doppler scattering function (DDSF), Sc(τ, ν), describes the
variance of the time-varying channel impulse response as a
function of delay and Doppler [8]; the approximate variance
of the channel coefficient is found by evaluating the scattering
function at the center of each delay-Doppler resolution bin.

We focus on detection performance in four illustrative, sep-
arable multipath environments: uniform in delay and Doppler,
exponential in delay and uniform in Doppler, uniform in delay
and ‘bathtub’ [9] in Doppler, and exponential in delay and
‘bathtub’ in Doppler. Table II defines the variance of the D
channel coefficients, where μ̄ is a constant equal to the average
delay spread, � ∈ {1, 2, ..., L} is the index of the channel
partition in delay, and m ∈ {1, 2, ..., 2M − 1} is the index of
the channel partition in Doppler.

TABLE II
MULTIPATH ENVIRONMENTS

Uniform Delay - Uniform Doppler
σ2
d(m, �) = 1

L(2M−1)

Exponential Delay - Uniform Doppler

σ2
d(m, �) = 1

μ̄
e
−τmax

(�−1/2)
Lμ̄

Uniform Delay - Bathtub Doppler
σ2
d(m, �) = 2

πνmax

1√
1−( 2m−1

M
−1)2

Exponential Delay - Bathtub Doppler

σ2
d(m, �) = 2

πμ̄νmax

e
−τmax

(�−1/2)
Lμ̄√

1−( 2m−1
M

−1)2

We cast our signal detection problem as a binary hypothesis
test. H0 will be defined as the noise only hypothesis; H1 as

the signal plus noise hypothesis. The received signal can be
written as

H0 : r = w ∼ CN (0, N0I)

H1 : r =
√
Eh+w ∼ CN (0, EΣh +N0I). (7)

where E is the transmit signal energy and N0 the noise power.
We assume the variance of the channel coefficients is known
or estimated. The optimal detector is a threshold test with test
statistic Z of quadratic form [2]:

Z =
D∑

d=1

|rd|2
(

1

N0
− 1

Eσ2
d +N0

)
. (8)

The decision is based on a threshold γ: if Z > γ the
detector decides H1, otherwise, the detector decides H0. The
test statistic under either hypothesis is a sum of exponential
random variables (equivalently, a sum of chi-squared random
variables each with 2 degrees of freedom). Z has a hypo-
exponential distribution [2] [10]:

H0 : Z ∼ Hypo

(
1 +

1

SNR1
, ..., 1 +

1

SNRD

)

H1 : Z ∼ Hypo

(
1

SNR1
, ...,

1

SNRD

)
(9)

where the per channel signal to noise ratio (SNRd) is

SNRd =
Eσ2

d

N0

D∑
d=1

SNRd = SNR. (10)

The hypo-exponential distribution has a cumulative density
function which can be expressed in closed form as [10]

P (Z < z) = F (z) = 1− e1
T ezG1 , z ≥ 0 (11)

where

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ1 λ1 0 · · · 0

0 −λ2 λ2 0
...

...
. . .

. . . 0

0 −λD−1 λD−1

0 · · · 0 0 −λD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[D×D]

(12)

1 = [1 1 ... 1]
T
[D×1] e1 = [1 0 ... 0]

T
[D×1] , (13)

{λd} are the parameters of the distribution (from equation
(9), λd = 1

SNRd
under H1), and e is the matrix exponential

operator. We assess the performance of the detectors based
on the error probabilities: the probability of false alarm, PFA,
and the probability of missed detection, PMD:

PFA = P (Z > γ|H0) PMD = P (Z < γ|H1). (14)



III. OVERVIEW OF RESULTS

Equation (1) is an optimization over two variables; using the
framework of the previous section, an exhaustive search over
all {T,W} ∈ [ 1

W , Tmax

] × [ 1T ,Wmax

]
could be employed.

Note Tmax and Wmax are the maximum values allowable
values of T and W dictated by design constraints. The lower
bound is imposed by time-bandwidth duality – T cannot be
less than 1/W , and W less than 1/T .

It is insightful to transform the optimization over T and W
in (1) to a larger optimization over the variance of the channel
coefficients (or equivalently, the signal to noise ratios of the
channel coefficients). If we can solve the larger optimization
problem, and show there exist a T and W that induce the
same optimal, we claim to have solved the optimization.

Using the closed form expression of the hypo-exponential
distribution (11), we can re-write (1) as an optimization over
the signal to noise ratios of the individual channel coefficients.
We seek to maximize the probability of signal detection (1−
PFA):

max
{SNRd}∈Rn

e1
T eγG11 (15)

subject to

γ : 1− e1
T eγG01 = PFA

n∑
d=1

SNRd = SNR

where e1[n×1] and 1[n×1] are defined in equation (12), G0 and
G1 defined by equation (12) under H0 and H1 respectively,
SNR and PFA are constants, and n a positive integer.

We conjecture, based on analytical results and insight gained
from numerical results, that the above problem is optimized
(the probability of detection is maximized) when:

SNRd ≈
{

1
c d = 1, ..., �c · SNR�
0 d = (�c · SNR�+ 1) , ..., n

(16)

or equivalently,
• condition C1) the number of independent degrees of

freedom1, D, induced by the transmit signal on the
channel is approximately Dopt = c ·SNR, where c ≈ 1/2
with a small dependance on PFA, and

• condition C2) the variance of the channel coefficients
(each corresponding to a degree of freedom) is approxi-
mately equal.

If there exists a T and W such that {SNRd} satisfy the
above conditions (or equivalently equation 16), we conjecture
this T and W maximize detection probability.

Table I lists configurations that potentially achieve these
conjectures – if the channel is uniform in either delay or
Doppler, we spread our transmit energy along that domain
(see equation (4)) to satisfy condition C2). As we explore in
Section V-D, in channels that exhibit non-uniform scattering

1Note that the number of independent degrees of freedom, D, is equivalent
to the number of non-zero channel coefficients.

in both delay and Doppler, there may not exist a T and W
that satisfy the above conditions. In this case, we search for
a T and W that come close to satisfying the two optimality
conditions.

Summary of support for condition C1): Figure 4(a) shows
optimal degrees of freedom as a function of SNR for a
uniform multipath environment for three values of PFA. While
there is a small dependance on PFA, the optimal number of
degrees of freedom, Dopt is approximately SNR

2 . Numerical
results throughout the following section further support this
conjecture. Additionally, a normal approximation for large D
indicates Dopt has a near linear dependance on the SNR (see
Section IV).

Summary of support for condition C2): Figures 6(d) - (f)
and Figures 9(d) - (f) show bar graphs of the channel coeffi-
cient variance, and the corresponding detection probabilities.
The probability of missed detection is minimized when the
channel coefficients have equal power. When the channel
coefficients are perturbed by a small amount, numerical results
indicate detection performance decreases (see Figures 5(b) -
9(b)). Additionally, equation (15) is a symmetric function of
{SNRd} ∈ Rn, which implies existence of a stationary point
at SNR1 = SNR2 = ... = SNRD as defined in equation (16)
(see proof in Section IV).
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Fig. 4. (a) Signal to noise ratio plotted against optimal degrees of freedom for
three values of PFA in uniform multipath generated using the closed form of
the hypo-exponential distribution. While the figure shows a small dependance
on the probability of false alarm, we approximate Dopt as SNR/2. (b) Signal
to noise ratio plotted against optimal degrees of freedom on a log-log scale.

IV. ANALYTICAL SUPPORT

In this section, we present analytical results to support
the conjecture that detection performance is optimized when
conditions C1 and C2 are met.

A. Uniform Multipath - Condition C1

We begin with support for condition C1. We assume that
condition C2 is met (in uniform multipath, condition C2 is
inherent). A similar problem has been studied in [1], chapter
14, in the context of minimum probability of error over a
communications channel. The authors of [1] arrive at a simple
rule of thumb for optimal degrees of freedom - D opt ≈ SNR

3 .
If the signal to noise ratio of the individual channel coeffi-

cients is equal, the expression in equation (15) can be written



in a simpler form:

min
D

PMD = min
D

F2D

(
F−1
2D (1 − PFA)

D

SNR +D

)
(17)

where D is the number of non-zero channel coefficients, F 2D

is the chi-squared cumulative density function with 2D degrees
of freedom, and F −1

2D is the inverse chi-squared CDF. In order
to simplify the expression further, we look at the specific case
where PFA = 0.5. In this case, we have that F−1

2D (1−PFA) ≈
2D (the median rapidly approaches the mean). We have

PMD ≈ F2D

(
2D2

SNR +D

)
(18)

=

∫ D2

SNR+D

0 tD−1e−tdt∫∞
0

tD−1e−tdt

where the second equality follows from the definition of the
chi-squared distribution. Equation (18) is known as the incom-
plete gamma function [11] and can be numerically evaluated
using standard mathematical software.

We can approximate equation (17) using a normal approxi-
mation: F2D(x) → 1−Q

(
x−2D
2D1/2

)
. Re-writing equation (17),

we have

max
D

Q

(
Q−1(PFA)D + SNR

√
D

SNR +D

)
(19)

where Q(x) =
∫∞
x

1
2π e

−t2dt. Equation (19) can be maximized
by differentiating the argument of the Q function:

Dopt = SNR + 2Q−1(PFA) (20)

−2Q−1(PFA)
√
Q−1(PFA)2 + SNR

Dopt ≈ SNR.

Figure 4 show the normal approximation plotted with nu-
merical minimization of equation (17). While the normal
approximation does capture the linear trend, it does not well
estimate the true optimal degrees of freedom.

B. Non-uniform Multipath - Condition C2

In non-uniform multipath, the signal to noise ratios of the
individual channel coefficients can take on distinct values,
and we return to the optimization as stated in equation (15).
Equation (15) is not a convex function of {SNR1...SNRn}.
Numerical evaluation of the case where n = 2 and SNR1 +
SNR2 = 1/2 shows the function, in general, is not convex.

The function in equation (15) is a symmetric function 2. This
implies that the solution {SNR1 = SNR2 = ... = SNRD} is
a stationary point.

Sketch of Proof: Consider a symmetric function f(x) :
R

n → R, with constraint xT1 = 1, as we have in equation
(15). Lemma: The hyperplane defined by the constraint xT1 =
1 is perpendicular to x = a1. Let U[n×n] be a permutation
matrix with exactly one 1 in each row and each column. By
definition of a symmetric function, f(x) = f(Ux). Using the

2A symmetric function is a function that is invariant to permutations of the
input, i.e. for x, y ∈ R, f(x, y) = f(y, x)

chain rule (where ∇f(x) is the gradient, or vector of partial
derivatives), we have:

∇f(Ux) = U∇f(y)|y=Ux (21)

Restricting x = a1 (i.e., x1 = x2 = ... = xn), we have
Ux = x and equation (21) is then

∇f(x) = U∇f(x) (22)

which is true for all permutation matrices, U , if and only if

∇f(x)|x=a1 = b1. (23)

The gradient of the function f(x) along the vector x = a1
is perpendicular to hyperplane defined by the constraint, and
x = a1 is a stationary point [12].

Note that fixing any SNRd = 0 is equivalent to reducing the
dimensionality of the optimization in equation (15). When the
dimensionality is reduced so that n = Dopt, the conditions
in equation (16) indicate the gradient of the function is
perpendicular to the constraint.

V. NUMERICAL SUPPORT

In this section we compare detection performance as a
function of signaling duration T , and signal bandwidth W .
The channels are assumed to be rich in multipath (i.e, each
delay-Doppler bin contains many discrete paths, for all sig-
naling durations and bandwidths); moreover, τmax = 10μs,
νmax ≈ 200Hz, PFA = 0.05, and SNR = 100.

For each scattering environment, the variance of the D
channel coefficients, {σ2

d}, are calculated using the expressions
found in Table II. They are normalized as

D∑
d=1

σ2
d = 1 SNR =

E
N0

=

D∑
d=1

Eσ2
d

N0
=

D∑
d=1

SNRd. (24)

For a given PFA the cumulative density function of the
test statistic under H0 can be inverted numerically to find
the corresponding threshold γ. The detector performance is
assessed via PMD for the corresponding threshold. PMD is
calculated using the closed-form expression for the hypo-
exponential distribution in (11).

Figures 5(a), 6(a),7(a), and 9(a) show detection performance
as a function of D, the degrees of freedom of the channel,
under the four different DDSFs. Each graph contains three
plots of PMD as defined in Table III. The three plots represent
different ways to increase D: (i) by increasing W (partitioning
in delay), (ii) increasing T (partitioning in Doppler), and
(iii) by increasing T and W proportionally (partitioning in
both delay and Doppler). Figure (1) illustrates these three
approaches - packet c1 is wide in bandwidth, c2 is proportional
in both signaling duration and bandwidth, and c 3 is long in
signaling duration. The total area (time-bandwidth product) of
each packet is the same, yet the aspect ratio of the packets
are different.

Figures 5(b), 6(b), 7(b), and 9(b) show detection perfor-
mance as a function of the packet aspect ratio, α. Each
figure contains three plots of PMD , corresponding to different



TABLE III
CHANNEL PARTITIONING IN FIGURES 5 - 9(A)

Increasing W - blue (dashed)
W ∝ D D = L = �Wτmax�

Increasing T - red (solid)
T ∝ D D = (M) = �Tνmax/2�
Increasing W and T - black (dotted)

W,T ∝ √
D L = (M) T

W
≈ τmax

νmax

fixed time-bandwidth products: i) solid - TW = 5 × 103, ii)
dashed - TW = 2 × 104, iii) dotted - TW = 5 × 104. The
horizontal plots labeled PMDmin show the minimum attainable
probability of missed detection for all values of D, α and
{σ2

d}. In all cases PMDmin
= 2.982×10−8. This is considered

our global minimum PMD for all channels with SNR = 100
and PFA = 0.05.

Figures 5(c), 6(c), 7(c), and 9(c) illustrate representative
multipath environments corresponding to the figures directly
above. Each dot represents a discrete multipath component. 3

The power of the multipath component is represented by the
area of the dot. The solid lines in each figure show different
ways in which the channel can be partitioned.

A. Uniform Multipath

Figure 5 shows detection performance under uniform mul-
tipath. As described above, Figure 5(a) plots detection per-
formance as a function of D for packets of three different
aspect ratios. For a fixed D, PMD does not depend on the
aspect ratio of the packet - all three plots in fig. 5(a) are
identical. Regardless of how the multipath environment is
partitioned, the variance of the D channel coefficients are
identical. Performance is constant for fixed D.

For all three plots in 5(a), the optimal performance occurs
at approximately D = 40. As noted in [2], this optimal
occurs at D = Dopt ≈ SNR

2 - optimal detection performance
occurs when the signal to noise ratio per degree of freedom
is approximately 2 – see Figure 4(a).

Figure 5(b) shows detection performance as a function of
packet aspect ratio. The left of the graph corresponds to
packets that are small in bandwidth and long in duration. The
right corresponds to packets that are wide in bandwidth and
short in duration. Detection performance deteriorates rapidly
when the aspect ratio becomes large or small. As this happens,
D becomes large (even though the time bandwidth product
is constant). D exceeds SNR

2 and detection performance
deteriorates. For extreme values of α, D exceeds Dopt at a
linear rate.

As an example, consider the dashed line in Figure 5(b).
What occurs when the packet aspect ratio exceeds 1 × 102?
As we continue to increase the aspect ratio, we increase
W - thus L increases. Signaling duration decreases but M ,
bounded below by 1, does not decrease. This causes D to

3Even though there are a finite number of multipath components in each
figure, we assume that for all signaling dimensions evaluated, there are
sufficiently many paths in each delay-Doppler bin so that the central limit
theorem can be invoked - this is known as rich multipath.

increase linearly with W ; we exceed optimal D and detection
performance deteriorates.
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Fig. 5. Uniform delay-Doppler scattering environment - (a) PMD as function
of D for three aspect ratios as described by Table III. (b) PMD as a function
of packet aspect ratio for three values of TW . The horizontal plot shows the
global minimum probability of missed detection, PMD = 2.982× 10−8 (c)
Illustration of a representative physical multipath environment. PFA = .05,
SNR = 100.

B. Exponential Delay

Unlike uniform DDSFs (for D fixed), in an exponential
delay, uniform Doppler environment, detection performance
depends on L and M independently, instead of their product.
Fig. 6(a) shows detection performance as a function of D of
an exponential delay, uniform Doppler multipath channel, such
as that illustrated in fig. 6(c). The red (solid) plot in the figure
represents performance when D is increased by increasing
the signaling duration of the transmit signal and keeping
bandwidth fixed. This partitions the multipath environment in
Doppler (indicated by the solid lines in Figure 6(c)). Since
the multipath environment is uniform in Doppler, partitioning
in Doppler only scales the variance of the channel coeffi-
cients (see Table II); all channel coefficients will have equal
variance (see Figure 6(d)). Empirically, optimal performance
is reached when each channel coefficient has equal variance
approximately equal to two - achieved by increasing T .

The dashed (blue) plot in fig. 6(a) shows performance when
D is increased by increasing bandwidth and holding signaling
duration constant. This partitions the channel in delay. Some
of the channel coefficients (corresponding to longer delays)
will contain little power as D is increased (see Figure 6(f)) –
optimal performance will not be reached since the variance of
each channel coefficients is not equal.

Figure 6(b) shows detection performance as a function
of α for three time-bandwidth products. For extreme aspect
ratios, detection performance decreases for the same reasons



discussed in the uniform case. For aspect ratios between ap-
proximately 10−2 and 102, there is a tilt to the plot – detection
performance is better for packets that are longer in duration
and short in bandwidth. As discussed above, this induces a
uniform power distribution on the channel coefficients.
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Fig. 6. Exponential delay - uniform Doppler environment - (a) PMD as
function of D for three aspect ratios as described by Table III. (b) PMD as a
function of packet α for three values of TW . (c) Illustration of a representative
physical multipath environment. PFA = .05, SNR = 100. (d) - (f) Variance
of the channel coefficients when probed with by three signals of different α.
(d) Probed by a near optimal signal (TW = 5 × 103 and α = 10−2). (e)
Sub-optimal approach with TW = 5 × 103, but α = 10−1 resulting in
D �= SNR

2
. (f) Sub-optimal approach where TW = 5× 103 and α = 102 .

C. Bathtub Doppler

Figure 7(a) and 7(b) plot detection performance for the
‘bathtub’ Doppler - uniform delay profile illustrated in Figure
7(c). Increasing bandwidth most effectively partitions the
channel - for the same reasons as discussed in exponential
DDSF case but in Doppler instead of delay. Since the channel
is uniform in delay, partitioning in delay results in channel co-
efficients with equal variance; optimal performance is reached
when SNR/D ≈ 2. For aspect ratios between approximately
10−2 and 102, there is a small tilt to the plot - opposite the
tilt in Figure 6(b). Detection performance is better for packets
that are wide in bandwidth.
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Fig. 7. Uniform delay - ‘bathtub’ Doppler - (a) PMD as function of D
for three aspect ratios as described by Table (III). (b) PMD as a function of
packet aspect ratio for three values of TW . (c) Illustration of a representative
physical multipath environment. PFA = .05, SNR = 100.

D. Exponential Delay, Bathtub Doppler

Figure 9(a) and 9(b) show performance of a channel
with exponentially distributed delay and ‘bathtub’ Doppler.
PMDmin

= 2.982×10−8 (plotted horizontally) is not achieved.
Regardless of how we partition the channel, we do not induce
uniform power in the channel coefficients (see Figure 9(d)-(f))
– a requirement to achieve optimal performance.

This specific case highlights a general class of multipath
environments in which diversity is non-uniform in both delay
and Doppler. Under the constraints of our model, the channel
cannot be partitioned so that variance of the channel coeffi-
cients are equal.

In order to find an optimal signaling duration and band-
width, we present an algorithm to minimize PMD . While equa-
tion (1) suggests a search over all {T,W}, it is advantageous
to convert the optimization to a search over {α, TW}, an
equivalent problem. The algorithm converts the two dimen-
sional optimization into a two step, one variable, recursive
optimization.

Algorithm 1 PMD Optimization
TWopt = start value
while |P k

MD − P k−1
MD | >tolerance do

calculate αopt = argmin
α

PMD(α, TWopt)

calculate TWopt = argmin
TW

PMD(αopt, TW )

P k−1
MD = P k

MD

P k
MD = PMD(αopt, TWopt)

end while
return TWopt, αopt, P k

MD

Algorithm 1 first fixes a TW and then searches over all



α. When an optimal α is found, the algorithm then searches
over all TW . This processes is repeated until the algorithm
converges on an optimal PMD . This approach offers many
advantages to a search over {T,W}. Primarily, {α, TW}
provide a natural basis to achieve the conjectured optimality
conditions in Section I; the algorithm often converges in as
few as two steps. Additionally, for a fixed α, PMD appears to
be a convex function of TW .
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Fig. 8. Contour plot of PMD with a visualization of algorithm 1. The
algorithm starts by searching along a line of constant TW , then along a
constant α, until converging on an optimal T and W .

VI. CONCLUSION

In this paper, we explored the effect of signaling duration
and bandwidth on non-coherent detection performance in dou-
bly selective multipath. Specifically, we attempted to maximize
the probability of signal detection, as a function of signaling
duration and bandwidth, for a given multipath environment.

Numerical and analytical results suggest that optimal per-
formance is reached when the following two conditions are
met:

1) the channel is partitioned so the channel coefficients
have equal variance, and

2) the number of independent degrees of freedom, D is
approximately SNR

2 .

In exponential delay, uniform Doppler environments, this
suggests we send packets that are long in duration and narrow
in bandwidth. In uniform delay and ‘bathtub’ Doppler, this
suggests we use detection packets that are wide in bandwidth,
and short in duration. If the channel is non-uniform in both
delay and Doppler, the developments of this paper can be used
to find the signaling duration and bandwidth that result in best
performance.
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