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Abstract—We analyze the fundamental limits of key generation
and describe an implementation based on error correcting codes.
We show that key extraction based on channel coefficients
significantly outperforms key extraction based on receivedsignal
strength indicators (RSSI). The development in this paper is
based on an IEEE 802.11a orthogonal frequency-division multi-
plexing (OFDM) model and We demonstrate that it is feasible to
use the sampled channel coefficients in OFDM as the key source.
The key extraction problem is cast as a Slepian-Wolf coding and
decoding problem. We construct regular and irregular forms of
binary and non-binary low-density parity check (LDPC) codes
to prototype our key extraction.

Index Terms—Common randomness, secret key generation,
OFDM channel, LDPC codes, Slepian-Wolf decoder

I. I NTRODUCTION

Current wireless communication security protocols are
largely based on public key cryptography, such as Wired
Equivalent Privacy (WEP), Extensible Authentication Protocol
(EAP) and Wi-Fi Protected Access (WPA). However, the
security of these techniques have been of great concern in
recent years. For example, an attacker can cause a denial-of-
service attack in a network equipped with WPA [1]. Also,
recent research show that public key cryptography consumes
a significant amount of computing resources and power. This
places a significant load on the resources of circuitry of small-
scale, especially battery-powered networks [2].

The encryption method we propose makes use of the inher-
ent channel randomness shared by two users Alice and Bob
[2]–[4]. This method generates a secret key from dependent
randomness observed by Alice and Bob. As the channel is
inherently random, the key generated herein is inherently
random, which is superior to the one generated by compu-
tational cryptography. The key generation method is based
on the channel coefficients under multipath propagation of
wireless channel and security relies on three fundamental radio
propagation properties induced by multipath:reciprocity of
radio propagation, as well astemporal and spatial channel
variations.

• Reciprocity of Radio Propagation: The electromagnetic
wave propagation is identical in both directions: the
propagation from Alice to Bob is identical to the one
from Bob to Alice. To be more specific, the multipath

Fig. 1. System Diagram

channel coefficients over a certain time scale are identical
in both Alice and Bob’s obsevations [2], [3].

• Temporal Channel Variation: The channel between Alice
and Bob changes whenever one of them moves or when-
ever there are moving scattering objects in this channel.

• Spatial Channel Variation: Once the channel is set up,
Alice and Bob uniquely characterize this channel. If mul-
tipath is rich, an eavesdropper (Eve) in another location
which is even a few wavelengths away from either of
them observes a distinct channel.

A. System Overview

We consider a system with the model shown in Figure. 1
and the operation of the system is summarized as follows.
Alice and Bob perform a two-way channel estimation: Alice
sends a training signal to Bob and Bob sends a training signal
to Alice in consecutive time slots. Alice obtains measurements
of the channel coefficients from her observation as does Bob.
Ideally, their observations are identical, but only correlated
in practice because of the asymmetric observation caused
by noise, interference or observation errors. We then need
a reconciliation process. In the reconciliation process, Alice
sends Bob a public message based on her observation which



she uses to describe her observation. The public message
from Alice must not reveal too much information to the
public. Based on the public message received and his own
observation, Bob can determine with high probability what
Alice’s observation is.

B. Related Work

There are many current research works on different secret
key generation techniques that explore multipath randomness.
For the method based on RSSI, when the channel is over-static,
key bits may contain long runs of 0’s and 1’s, which make it
susceptible to potential attackers. In [5], an adaptive quantizer
is proposed to address the problem caused by the over-
static channel. They incorporate the Discrete Cosine Transform
(DCT) transform to remove the redundancy caused by long
runs of 0’s and 1’s. Universal hash functions (UHFs) are used
in [4] to amplify the randomness by extracting the maximum
possible amount of entropy. In quantizer design, a good
quantizer should not only maximize the mutual information
between Alice and Bob’s bit sequences, but also reveal limited
information to the eavesdropper. An algorithm is proposed
in [6], [7] to find such a quantizer, inspired from [8], [9]. Fun-
damental limits to key generation for multipath randomness
are studied in [10], including the minimum energy required to
generate a finite-length key with a specified probability of error
in key acquisition. The analysis is further extended in [11]to
sparse multipath channels which exhibit high correlations.

C. Notation

Unless otherwise specified, we use upper case letters, e.g.,
X to denote a random variable and bold letters, e.g.,X to
denote a random vector:x andx are the respective realizations.
If X is a complex random variable, we useRe(X) andIm(X)
to denote its real and imaginary part, respectively. In particular,
we denote a complex Gaussian random variableX with mean
m, varianceσ2, and with real and imaginary parts independent
and identically distributed asX ∼ CN (m, σ2).

D. Paper Outline

The rest of the paper is organized as follows. In Section II
we provide necessary background on OFDM. In Section III we
define our measurement model and discuss some discoveries
in secret key capacity calculation. In Section IV we explainthe
use and introduce the design of our Slepian-Wolf LDPC codes.
In Section V we provide simulation results of OFDM model
and LDPC codes under typical Wi-Fi parameter settings. We
conclude the paper in Section VI.

II. FUNDAMENTAL BACKGROUND

A. OFDM Background

In this section, we introduce the OFDM model and study
the sampled channel coefficients from which the key bits are
extracted. Since we extract the keys from sampled channel
coefficients, we use “sampled channel coefficients” and “chan-
nel coefficients” interchangablly. The OFDM model we use
follows closely to [12].

1) OFDM Channel Model: Consider an OFDM system
with M frequency tones. The received signalr(t) in an OFDM
communication system can be demodulated atnth tone by
match-filtering with the Fourier basis functionφn(t) [12]:

rn = 〈r(t), φn(t)〉
= Hnsn + wn, (1)

where〈r(t), φn(t)〉 is defined as
∫
∞

0
r(t)φ∗

n(t)dt. We termHn

the frequency domainchannel coefficient atnth tone andwn

is a complex white Gaussian noise with varianceσ2
n. In our

setup, Alice and Bob send sounding signal to each other and
for simplicity we assume the sounding signal has amplitude
sn = 1. Hn is thefrequency domainchannel coefficient atnth

tone and it can be represented as:

Hn =

Np∑

k=0

βke−j2πτkn∆f

(a)≈ 1√
M

M−1∑

ℓ=0

hℓe
−j2π ℓ

W
n∆f

(b)≈ 1√
M

L−1∑

ℓ=0

hℓe
−j2π ℓ

W
n∆f , (2)

ParameterNp is the total number of transmission paths and
τk ∈ [0, τmax] is the path delay of thekth path. The variable
βk is the complex path gain associated with thekth path
and it can be modeled as a complex-valued random variable
due to the randomness of its phase. The variablehℓ is the
sampledor time domainchannel coefficient associated with
the ℓth resolvable delay bin. The inequality(a) comes from
the fact that eachhℓ approximately equals to the sum ofβk ’s
that are within theℓth resolvable bin [12]. The parameter
L ≈ ⌈τmaxW ⌉ is the degree of freedom (DoF). The inequality
(b) comes from the fact that the lastM − L sample channel
coefficients are approximately equal to zero. They are not
exactly zero due to the spread of tails of sinc functions in
the firstL bins [12].

As we can see from (2), frequency domain channel coeffi-
cients are related to time domain coefficients through Discrete
Fourier Transform (DFT). The DFT can be viewed as the
decorrelator which decorrelates theM frequency channel co-
efficients intoL approximately independent sampled channel
coefficients. This approximation is asymptotically exact as T

becomes large where the DFT vectors become the eigenfunc-
tions of Toeplitz matrices [13]. We assume the time domain
coefficients are perfectly independent in the remaining parts
of the paper, unless otherwise specified.

2) Signal to Noise Ratio:When multipath is rich, i.e.,Np

is large,Hn can be well modeled asCN (0, σ2
H) due to the

central limit theorem (CLT). From (1), we define the per-tone
SNR in frequency domain as:

SNRf =
E[H2

n]

E[w2
n]

=
σ2

H

σ2
n

. (3)



Because the DFT is unitary transform, Parseval’s theorem
states that:

M−1∑

n=0

|Hn|2 ≈
M−1∑

ℓ=0

|hℓ|2 ≈
L−1∑

ℓ=0

|hℓ|2, (4)

where the approximation follows from the approximation in
(2). Letσh(ℓ)2 denote the variance of theℓth sampled channel
coefficient. We have the following relationship between the
variance of frequency domain channel coefficients and sam-
pled coefficients:

L−1∑

ℓ=0

σh(ℓ)2 =

L−1∑

ℓ=0

E[h2
ℓ ] ≈

M−1∑

n=0

E[H2
n] = Mσ2

H , (5)

Therefore, the SNR in the time domain is related to the SNR
in the frequency domain as:

L−1∑

ℓ=0

SNRτ (ℓ) ≈ M · SNRf , (6)

whereSNRτ (ℓ) is the time domain SNR at theℓth sampled
channel coefficient. If we assume sampled channel coefficients
to have equal variance, the SNR in time domain reduces to:

SNRτ = SNRτ (ℓ) ≈ M

L
SNRf . (7)

III. SECRETKEY CAPACITY

In this section, we introduce the measurement model and
compare two secret key extraction methods.

A. Measurement Model and Capacity from Channel Coeffi-
cients

From (1), we model Alice and Bob’s measurements as:

HA,n = Hn + wA,n

HB,n = Hn + wB,n, (8)

respectively wherewA,n, wB,n ∼ CN (0, σ2
n) are independent

sources of noise. We can also consider the time domain
observation as:

hA,ℓ = Re(hA,ℓ) + jIm(hA,ℓ) = hℓ + nA,ℓ

hB,ℓ = Re(hB,ℓ) + jIm(hB,ℓ) = hℓ + nB,ℓ, (9)

wherehℓ ∼ CN (0, σh(ℓ)2) is the sampled channel coefficient
and nB,ℓ, nA,ℓ ∼ CN (0, σ2

n) are the noises. The correlation
coefficient inℓth sampled channel coefficient is given as:

ρτ (ℓ) =
σh(ℓ)2

σh(ℓ)2 + σ2
n

=
SNRτ (ℓ)

1 + SNRτ (ℓ)
. (10)

Note that the correlation coefficientρτ (ℓ) betweenhA,ℓ and
hB,ℓ is equal to the correlation coefficient betweenRe(hA,ℓ)
andRe(hB,ℓ) or equivalently equal to that betweenIm(hA,ℓ)
andIm(hB,ℓ). With the correlation coefficient defined above,

the mutual information between Alice and Bob at sampled
coefficient domain is represented by:

I(A; B) ≈
L−1∑

ℓ=0

− log

[
1 −

(
SNRτ (ℓ)

1 + SNRτ (ℓ)

)2]
, (11)

and the secret key capacity is given by:

C ≈ 1

2M

L−1∑

ℓ=0

− log

[
1 −

(
SNRτ (ℓ)

1 + SNRτ (ℓ)

)2]
, (12)

Note that the mutual information between Alice and Bob at
a particular sampled channel coefficient consists of the sum
of mutual information between real and imaginary parts of
that coefficient and the total number of observation symbol is
2M . If we assume sampled coefficients to have equal variance,
ρτ (ℓ) does not depend onℓ and the secret key capacity reduces
to:

C ≈ − L

2M
log

[
1 −

(
SNRτ

1 + SNRτ

)2]
. (13)

We comment that if we have access to the statistics of
frequency domain coefficients, the secret key capacity between
Alice and Bob can be equivalently calculated from frequency
domain channel coefficients. To do this, we perform eigenvalue
decomposition (EVD) on the correlation matrix of frequency
domain coefficients thus completely decorrelate those fre-
quency domain coefficients into independent entities and the
mutual information is the sum of the mutual information of
these entities. The secret key capacity is then the total mutual
information normalized by2M . However, we may not be
able to do this in the actual operation of the system because
the training between Alice and Bob may only occur few
times before they have enough statistics of frequency domain
coefficients unless it is an available prior.

B. Compared with RSSI-Based Approach

In this section we study the secret key capacity under an
idealized model wherein all sampled channel coefficients have
the same variance. We lethA,ℓ, hB,ℓ be CN (0, σ2) where
σ2 = σ2

h +σ2
n. Note thatRe(hA,ℓ), Re(hB,ℓ) have correlation

coefficient ρτ which does not depend onℓ and Im(hA,j),
Im(hA,j) also have the same correlation coefficientρτ . The
secret key capacity between Alice and Bob now reduces to
(13). We show in this section that secret key extraction based
on channel coefficients is superior to the one based on RSSI.

The secret key capacity obtained from sampled channel
coefficients can be calculated using (13). To calculate the
secret key capacity between RSSIs, letRA andRB denote the
RSSI received by Alice and Bob respectively. In an OFDM



system, the RSSI typically takes the form [14]:

RA =

L−1∑

ℓ=0

|hA,ℓ|2 =

L−1∑

ℓ=0

|Re(hA,ℓ)|2

+

L−1∑

ℓ=0

|Im(hA,ℓ)|2 =

2L−1∑

ℓ=0

X2
A,ℓ,

RB =

L−1∑

ℓ=0

|hB,ℓ|2 =

L−1∑

ℓ=0

|Re(hB,ℓ)|2

+
L−1∑

ℓ=0

|Im(hB,ℓ)|2 =
2L−1∑

ℓ=0

X2
B,ℓ, (14)

where XA,ℓ and XB,ℓ are N (0, σ2

2 ) Gaussian random vari-
ables with correlation coefficientρτ . Both RA and RB are
non-standard chi-square distributed random variables with 2L

degree of freedom. However, as we are only interested in
I(RA; RB) and sinceI(RA; RB) equals toI(aRA; aRB) with
a being a non-zero constant, we can normalizeXA,ℓ and
XB,ℓ by the variance so that bothRA and RB are standard
chi-square distributed random variables with2L degree of
freedom. The secret key capacity is then given by:

CRSSI =
1

2M
I(RA; RB). (15)

The joint density function of two standard chi-square
random variables can be found in [15] and it is used to
numerically calculate the mutual informationI(RA; RB).

When L is large,RA and RB can be well approximated
as Gaussian random variables due to the central limit theo-
rem (CLT). With the variance normalization,E[X2

A,ℓ] = 1,
E[X4

A,ℓ] = 3, and V ar[X2
A,ℓ] = 2, RA and RB are both

N (2L, 4L) random variables. The mutual information be-
tween RSSIs under Gaussian approximation can be calculated
as:

I(RA, RB) =
1

2
log

(
1

1 − ρ4
τ

)
, (16)

and the secret key capacity is given by:

CRSSI =
1

4M
log

(
1

1 − ρ4
τ

)
. (17)

Observe from (17) that the secret key capacity does not
depend onL. In other words, at a givenSNRτ , while the
capacity between coefficients increases linearly withL as
shown in equation (13), the capacity between RSSIs stays
the same. This is because there is only one single RSSI
value regardless of the number of observations. In Fig. 2, we
compare the capacity obtained from channel coefficients and
from RSSIs forL = 2, 5 and10 with M = 10. The secret key
capacity between the channel coefficients is calculated using
(13) and that between RSSIs is calculated both using numerical
(15) and Gaussian approximation (17). We first note that the
secret key capacity obtained from the channel coefficients
increases withL, whereas that based on RSSI stays constant.
Furthermore, Gaussian approximation is quite accurate, even
whenL is rather small.
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Fig. 2. Secret Key Capacity when L = 2, 5, and 10. M = 10

Fig. 3. Slepian-Wolf Decoding

IV. SLEPIAN-WOLF LDPC CODE

In this section we prototype a key reconciliation system
based on LDPC codes. Alice initiates the reconciliation pro-
cess by sending Bob the syndromeS which is the index of
the bin her quantized observationX belongs to. Her sequence
X is obtained by quantizing the real and imaginary parts of
sampled channel coefficientshA,ℓ, ℓ = 0, 1, . . . , L − 1 she
observes. Since Alice may observe multiple copies ofhA,ℓ,
we assumeX has lengthN . Then based on the received bin
index and his own observationY, Bob tries to find the most
correlated sequencêX which is in the same bin indexed byS.
This problem can be best expressed as a decoding-with-side-
information problem as shown in Fig. 3. After decoding, if
Bob’s decoded result is equal to Alice’s observation, a secret
key can be extracted and the process terminates.

Under binary quantization,X ∈ {0, 1}N , Y ∈ YN and
S ∈ {0, 1}N(1−R) where R is the rate of the underlying
LDPC code. The Slepian-Wolf theorem [16] says that the
syndrome decoding succeeds with error probability approach-
ing 0 as N approaches infinity, given the condition that
1−R > 1

N
H(X|Y). Note thatR has the unitbits per sampled

coefficientand a scaling ofL
M

is needed to convert tobits
per frequency domain coefficientwhich secret key capacity is



based upon.
We construct regular LDPC codes using a code generating

engine [17] and we build irregular LDPC codes using density
evolution [18]. To meet the requirement of 4-level quantiza-
tion, we also design a non-binary LDPC code inGF (4). To
implement our 4-ary codes we combine two binary LDPC
codes and augment these two corresponding factor graphs
by extra factor nodes that encode the mapping from 4-ary
variables to binary variables. The decoding algorithm runs
belief propagation (BP) on this augmented factor graph.

V. SIMULATION RESULTS

In this section we provide simulation results and discussion
for the theoretical models proposed in previous sections.

A. OFDM Simulation Results

We first show the simulation result of an IEEE 802.11a
channel. We simulate the frequency and sampled channel
coefficients and their correlation matrices. Then we numeri-
cally compute the empirical secret key capacity between Alice
and Bob based on our simulated frequency and time domain
channel coefficients under different channel environment.

1) Channel Coefficients Simulation:An 802.11a OFDM
channel with rich multipath typically has the following key
parameters [19]:

No. of Tones (M ) 52

Signal Bandwidth (W ) 20 MHz
Signal Duration (T ) 3.2 µs

Carrier Frequency Spacing (∆f ) 312.5 kHz
Center Carrier Frequency (F ) 5.18 GHz

We considerNp = 300 multipath and assume the52
tones all have the sameSNRf (3). For simplicity, we choose
the maximum delay spreadτmax to be 650 ns so that the
degree of freedom (DoF)L ≈ ⌈τmaxW ⌉ = 13. We reduce
the redundancy in theM = 52 frequency domain channel
coefficients by using the IDFT transform to obtain13 ap-
proximately independent sampled channel coefficients. Note
that these coefficients will not have the same variance as was
ideally assumed in Section III-B. We perform105 independent
channel realizations and the sets of complex path gainβk ’s
are independent across realizations. We construct the contour
plots of correlation matrices of frequency domain channel
coefficients and sampled channel coefficients as shown in
Fig. 4. The plot shows how frequency domain coefficients are
correlated with each other and how sampled coefficients are
correlated with each other.

2) Secret Key Capacity Simulation:We can characterize the
secret key capacity between Alice and Bob in two different
ways: one from the sampled channel coefficients using (12)
and one from the frequency domain channel coefficients. We
calculate it from the frequency domain channel coefficients.
Recall that we have simulated the empirical correlation matrix
of frequency domain coefficients, we can perform eigenvalue
decomposition (EVD) on this correlation matrix to decorrelate
the frequency domain coefficients. Note that this requires the
actual statistics of frequency domain coefficients which may
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Fig. 4. OFDM Channel Coefficients Simulation. Note that13 sampled
channel coefficients are decorrelated from52 frequency domain channel
coefficients using IDFT. Also note that sampled channel coefficients do not
have the same variance.

not be obtainable in actual operation of our system. Fig. 5
provides the secret key capacity drawn from frequency domain
channel coefficients where we plot it underL = 1, 13 and52
versusSNRf .

Simulation in Fig. 5 suggest that there is no single optimal
OFDM channel which has the best secret key capacity under
any SNRf : under lowSNRf , one would like to have fewer
degree of freedom; under highSNRf , one would like to have
more degree of freedom.

B. Slepian-Wolf Decoding

There are basically two ways for an error correcting code
to reconcile their measured channel coefficients. If they both
quantize their channel coefficients and obtain two quantized
sequences, we call thishard decodingprocess. On the other
hand, if only Alice quantizes her channel coefficients and Bob
keeps his unquantized coefficients, we call thissoft decoding
process. In soft decoding process, the decoder has access to
Bob’s full unquantized channel coefficients which improves
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Fig. 6. LDPC Performance

its decoding performance (Fig. 1). Note thatY = R in soft
decoding, andY = {0, 1} in hard decoding if binary quantizer
is used orY = {0, 1, 2, 3} if 4-ary quantizer is used.

We simulate the performance of our error correcting code
using the sampled channel coefficients we simulated in Sec-
tion V-A1 with L = 13. We connect our LDPC simulation
with the secret key capacity in Section V-A2 by putting them
in the same plot. We plot the capacity whenL = 13 and the
performance of the binary and non-binary (4-ary) LDPC code
in Fig. 6.

The irregular LDPC codes are constructed using density
evolution technique [18]. We first note that our decoding
performance is improved by using soft decoding and it is
further improved by using irregular LDPC codes. Non-binary
LDPC further improves the performance and approaches the
capacity. LDPC codes with rate below0.25 are not simulated
as low code rate means large syndrome size which is less
secure.

VI. CONCLUSION

We study channel randomness and propose a practical sys-
tem that can be used to generate secret keys based on channel
randomness. We investigate the secret key capacity shared by
two end users and conclude that channel-coefficients-based
approach is superior to RSSIs-based approach in the sense that
the former gives higher secret key capacity. The simulation
show that it is feasible to work on sampled channel coeffi-
cients. Regular and Irregular LDPC codes with the Slepian-
Wolf decoding structure are designed to reconcile the two users
to help them establish the same observation.
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