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Abstract—We analyze the fundamental limits of key generation
and describe an implementation based on error correcting cdes.
We show that key extraction based on channel coefficients
significantly outperforms key extraction based on receivedignal
strength indicators (RSSI). The development in this paper §
based on an IEEE 802.11a orthogonal frequency-division mti
plexing (OFDM) model and We demonstrate that it is feasible &
use the sampled channel coefficients in OFDM as the key source
The key extraction problem is cast as a Slepian-Wolf coding rad
decoding problem. We construct regular and irregular forms of
binary and non-binary low-density parity check (LDPC) codes
to prototype our key extraction.

Index Terms—Common randomness, secret key generation,
OFDM channel, LDPC codes, Slepian-Wolf decoder

I. INTRODUCTION

Current wireless communication security protocols are
largely based on public key cryptography, such as Wired
Equivalent Privacy (WEP), Extensible Authentication Bomi
(EAP) and Wi-Fi Protected Access (WPA). However, the
security of these techniques have been of great concern in
recent years. For example, an attacker can cause a denial-of
service attack in a network equipped with WPA [1]. Also, e«
recent research show that public key cryptography consumes
a significant amount of computing resources and power. This
places a significant load on the resources of circuitry oflsma e
scale, especially battery-powered networks [2].

The encryption method we propose makes use of the inher-
ent channel randomness shared by two users Alice and Bob
[2]-[4]. This method generates a secret key from dependent
randomness observed by Alice and Bob. As the channel is
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Fig. 1. System Diagram

channel coefficients over a certain time scale are identical
in both Alice and Bob’s obsevations [2], [3].

Temporal Channel VariatiarnThe channel between Alice
and Bob changes whenever one of them moves or when-
ever there are moving scattering objects in this channel.
Spatial Channel VariationOnce the channel is set up,
Alice and Bob uniquely characterize this channel. If mul-
tipath is rich, an eavesdropper (Eve) in another location
which is even a few wavelengths away from either of
them observes a distinct channel.

inherently random, the key generated herein is inherenfly System Overview

random, which is superior to the one generated by compu-+we consider a system with the model shown in Figure. 1
tational cryptography. The key generation method is basgfld the operation of the system is summarized as follows.
on the channel coefficients under multipath propagation gfice and Bob perform a two-way channel estimation: Alice
wireless channel and security relies on three fundameauiéd r sends a training signal to Bob and Bob sends a training signal
propagation properties induced by multipateciprocity of o Alice in consecutive time slots. Alice obtains measuretse
radio propagation as well astemporal and spatial channel of the channel coefficients from her observation as does Bob.

variations

Ideally, their observations are identical, but only caatet

« Reciprocity of Radio PropagatiorThe electromagnetic in practice because of the asymmetric observation caused
wave propagation is identical in both directions: they noise, interference or observation errors. We then need
propagation from Alice to Bob is identical to the one reconciliation process. In the reconciliation procesk;eA
from Bob to Alice. To be more specific, the multipatrsends Bob a public message based on her observation which



she uses to describe her observation. The public messagé) OFDM Channel Model: Consider an OFDM system
from Alice must not reveal too much information to thewith A/ frequency tones. The received signél) in an OFDM
public. Based on the public message received and his osmmmunication system can be demodulated:%t tone by
observation, Bob can determine with high probability whahatch-filtering with the Fourier basis functiae, (¢) [12]:
Alice’s observation is.

n = <T(t)a d)n (t)>

B. Related Work = Hpsn + wp, (1)

There are many current research works on different secret
key generation techniques that explore multipath randmna,vhereg(t), b, (t)) is defined aq'ooo ()¢ (t)dt. We termH,
For the method based on RSSI, when the channel is over;statie frequency domairchannel coefficient at!” tone andw,,
key bits may contain long runs of 0's and 1's, which make j& a complex white Gaussian noise with variande In our
susceptible to potential attackers. In [5], an adaptiventiper  setup, Alice and Bob send sounding signal to each other and

is proposed to address the problem caused by the ov®i simplicity we assume the sounding signal has amplitude
static channel. They incorporate the Discrete Cosine Toams s, — 1. H,, is thefrequency domaichannel coefficient at*”

(DCT) transform to remove the redundancy caused by lofghe and it can be represented as:
runs of O's and 1's. Universal hash functions (UHFs) are used

in [4] to amplify the randomness by extracting the maximum Np ‘

possible amount of entropy. In quantizer design, a good H, = Zﬁke_ﬂ”’“mf

guantizer should not only maximize the mutual information k=0

between Alice and Bob's bit sequences, but also revealdimit @ 1 = jonLaAf

information to the eavesdropper. An algorithm is proposed ~ \/—M Z hee v

in [6], [7] to find such a quantizer, inspired from [8], [9]. Ru (=0

damental limits to key generation for multipath randomness (b) 1 = _jonLnAf

are studied in [10], including the minimum energy required t = UM hee 77T, @

~

[}

generate a finite-length key with a specified probabilityrobe

in key acquisition. The analysis is further extended in [tdl] ParameterV,, is the total number of transmission paths and
sparse multipath channels which exhibit high correlations 7, € [0, 7,,..] is the path delay of thé"" path. The variable
C. Notation B is the complex path gain associated with thé path

' and it can be modeled as a complex-valued random variable

Unless otherwise specified, we use upper case letters, eggie to the randomness of its phase. The varidhlds the
X to denote a random variable and bold letters, 9.0 sampledor time domainchannel coefficient associated with
denote a random vector:andx are the respective realizationsthe ¢t resolvable delay bin. The inequality.) comes from
If X is a complex random variable, we uBe(.X) andIm(X) the fact that eact, approximately equals to the sum 6f's
to denote its real and imaginary part, respectively. Inipaldr, that are within the/*" resolvable bin [12]. The parameter
we denote a complex Gaussian random varidbleith mean 7, ~ [r,.,. W] is the degree of freedom (DoF). The inequality
m, variancer?, and with real and imaginary parts independenb) comes from the fact that the lagf — L sample channel
and identically distributed a& ~ CN/(m,o?). coefficients are approximately equal to zero. They are not
exactly zero due to the spread of tails of sinc functions in
) ) ~ thefirst L bins [12].

The rgst of the paper is organized as follows. In Sectlon Il As we can see from (2), frequency domain channel coeffi-
we provide necessary background on OFDM. In Section Il Wga s are related to time domain coefficients through Biscr
define our measurement model and discuss some disCOVeHES ier Transform (DFT). The DFT can be viewed as the
in secret key capacity calculation. In Section IV we expta@ yocorrelator which decorrelates thé frequency channel co-
use and introduce the design of our Slepian-Wolf LDPC codegicients into, approximately independent sampled channel
In Section V we provide simulation results of OFDM model ,efficients. This approximation is asymptotically exastia
and LDPC codes under typical Wi-Fi parameter settings. W -omes large where the DFT vectors become the eigenfunc-
conclude the paper in Section VI. tions of Toeplitz matrices [13]. We assume the time domain

Il. FUNDAMENTAL BACKGROUND c?erf]ficients are Iperfectrlly in(.jepende.?_t (ijn the remainingspar
of the paper, unless otherwise specified.
A OFI?M BaFkgrounq 2) Signal to Noise RatioWhen multipath is rich, i.e.N,
In this section, we introduce the OFDM model and study¥ |arge, 17, can be well modeled asN (0,0%) due to the

the sampled channel coefficients from which the key bits aggntral limit theorem (CLT). From (1), we define the per-tone
extracted. Since we extract the keys from sampled chanRgyr in frequency domain as:

coefficients, we use “sampled channel coefficients” andrieha

nel coefficients” interchangablly. The OFDM model we use SNR. — E[H?]  o% 3
follows closely to [12]. o= T g2 ®)

Elwi]  of

D. Paper Outline




Because the DFT is unitary transform, Parseval's theordhe mutual information between Alice and Bob at sampled

states that: coefficient domain is represented by:
M—-1 M—1 L—-1
DoHAP Y (bl =Y (el (4) = SNR-(f) \°
n=0 =0 =0 I(A;B)~ )  —log {1 - (m) :|a (11)

where the approximation follows from the approximation in =0

(2). Letoy,(¢)? denote the variance of th#é" sampled channel dth t k ity is ai by:
coefficient. We have the following relationship between th@hd the Secret key capacity IS given by
variance of frequency domain channel coefficients and sam-

led coefficients: L-1 2
P Cmi —log [1_ (M) ]’ (12)
L—1 L—1 M-1 2M = 1+ SNR-(0)
Y on(0)? =Y Ehil~ > E[H)] =Mooy,  (5)
=0 =0 n=0 Note that the mutual information between Alice and Bob at

Therefore, the SNR in the time domain is related to the SN®R particular sampled channel coefficient consists of the sum
in the frequency domain as: of mutual information between real and imaginary parts of
1 that cfoefficient and the tloté';ll nufnf1ber of obr_?ervation Tymbol i
- ' 2M. If we assume sampled coefficients to have equal variance,
; SNE () ~ M - SN Ry, ©) p-(¢) does not depend ahand the secret key capacity reduces
to:
where SN R, (¢) is the time domain SNR at th&" sampled
channel coefficien_t. If we assume gampled chan_nel coefticien I SNR. \?
to have equal variance, the SNR in time domain reduces to: C= o log [1 - <m) } (13)
SNR, =SNR,({) = MSNR,«. @) ) o
L We comment that if we have access to the statistics of
I1l. SECRETKEY CAPACITY frequency domain coefficients, the secret key capacity detw
In this section. we introduce the measurement model aA(IJce and Bob can be equivalently calculated from frequency
’ . Homain channel coefficients. To do this, we perform eigare/al
compare two secret key extraction methods. - . :
decomposition (EVD) on the correlation matrix of frequency
A. Measurement Model and Capacity from Channel Coefflomain coefficients thus completely decorrelate those fre-
cients quency domain coefficients into independent entities aed th
mutual information is the sum of the mutual information of
these entities. The secret key capacity is then the totalahut
Hy, = H,+wa, information normalized by2M. However, we may not be
I ' O 4w ' ) able to.d_o this in the act.ual operation of the system because
By n T B the training between Alice and Bob may only occur few
respectively wherev 4 ,,, wp,, ~ CN(0,02) are independent times before they have enough statistics of frequency domai
sources of noise. We can also consider the time domd&@efficients unless it is an available prior.
observation as:

From (1), we model Alice and Bob’s measurements as:

hae = Re(hae)+jIm(hae) =he+mnay B. Compared with RSSI-Based Approach
hge = Re(hpye)+ jIm(hpe) = he+npy, (9)

In this section we study the secret key capacity under an
whereh, ~ CN(0,01,(¢)?) is the sampled channel coefficienidealized model wherein all sampled channel coefficiente ha
andng e, nas ~ CN(0,02) are the noises. The correlationhe same variance. We léta o, hpe be CA(0,02) where
coefficient in/** sampled channel coefficient is given as: o2 = U% +02. Note thaﬁ)‘{e(hA:g), %;(hB.l) have correlation

on(6)? coefficient p, which does not depend ot and Jm(ha4 ;),
pr(£) m Jm(ha,;) also have the same correlation coefficignt The
hS NR.( é’)l secret key capacity between Alice and Bob now reduces to
= =T (10) (13). We show in this section that secret key extraction thase
1+ SNR-(¢) on channel coefficients is superior to the one based on RSSI.

Note that the correlation coefficiept (¢) betweenh 4 , and The secret key capacity obtained from sampled channel
hp, is equal to the correlation coefficient betwe®n(h4 ,) coefficients can be calculated using (13). To calculate the
andRe(hp ¢) or equivalently equal to that betwedm(h 4 () secret key capacity between RSSIs,Ret and R denote the
andJm(hp ¢). With the correlation coefficient defined aboveRSSI received by Alice and Bob respectively. In an OFDM



system, the RSSI typically takes the form [14]: ,

10 T
L—-1 L—-1
2 2
Ra = > |hael = [Re(hay)l
=0 =0
L—-1 2L—-1
2 2
+ E |Tm(hae)|” = E X405 g
=0 =0 g
L—1 L-1 g
_ § : 2 _ E : 2 g
RB - |hB7E| - |me(h’Bﬁl)| E —=— From Coefficients, L = 10
=0 =0 From Coefficients, L =5
10" —e— From Coefficients, L = 2
L—-1 2L—-1 —+—FromRSSI, L=2
Fi RSSI,L=5
+ E |Jm hB g E XB 0 (14) 10 _._F:EE RSSI, L = 10
=0 —— RSSI, Gaussian Approx
where X 4 , and X, are (0, "7) Gaussian random vari- 10 = 0 5 10 15

SNR_(dB)

ables with correlation coefficient.. Both R4 and Rg are
non-standard chi-square distributed random variablds vit

degree of freedom. However, as we are only interested in  Fi9:
I(Ra; Rp) and since (R4; Rp) equals tal (aR 4; aRp) with

a being a non-zero constant, we can normali¥g , and

Xp ¢ by the variance so that botR4 and Rp are standard
chi-square distributed random variables witlh degree of X
freedom. The secret key capacity is then given by:

2. Secret Key Capacity when L = 2, 5, and 10. M = 10

- Correlated Source

1
CRSSI = WI(RA§RB)- (15)

'—.. — S == 1
The joint density function of two standard chi-squai % .
random variables can be found in [15] and it is used
X

numerically calculate the mutual informatidiR 4; Rg).

When L is large, R4 and Rg can be well approximated
as Gaussian random variables due to the central limit theo-
rem (CLT). With the variance normalizatiod;[X?% ,] = 1,
E[X%, = 3, andVar[X3,] = 2, Ra and Rp are both
N(2L,4L) random variables. The mutual information be-
tween RSSIs under Gaussian approximation can be calculated

as: In this section we prototype a key reconciliation system
1 1 based on LDPC codes. Alice initiates the reconciliation-pro
(R, ) = 2 log (1 - pi)’ (16) cess by sending Bob the syndrorfiewhich is the index of
the bin her quantized observatidh belongs to. Her sequence
X is obtained by quantizing the real and imaginary parts of
lo g( 1 > (17) sampled channel coefficientsy,, £ = 0,1,...,L — 1 she
4M - Pz observes. Since Alice may observe multiple copiesiafy,
Observe from (17) that the secret key capacity does nwe assumeX has lengthN. Then based on the received bin
depend onL. In other words, at a givelSs N R, while the index and his own observatiod, Bob tries to find the most
capacity between coefficients increases linearly withas correlated sequenc® which is in the same bin indexed I8y
shown in equation (13), the capacity between RSSIs stalis problem can be best expressed as a decoding-with-side-
the same. This is because there is only one single RS&formation problem as shown in Fig. 3. After decoding, if
value regardless of the number of observations. In Fig. 2, B@b’s decoded result is equal to Alice’s observation, aetecr
compare the capacity obtained from channel coefficients akely can be extracted and the process terminates.
from RSSlIs forL = 2,5 and10 with M = 10. The secret key ~ Under binary quantizationX < {0,1}, Y € YV and
capacity between the channel coefficients is calculatedigusiS € {0,1}N(~%) where R is the rate of the underlying
(13) and that between RSSIs is calculated both using nuadericDPC code. The Slepian-Wolf theorem [16] says that the
(15) and Gaussian approximation (17). We first note that tgndrome decoding succeeds with error probability apgroac
secret key capacity obtained from the channel coefficienity 0 as N approaches infinity, given the condition that
increases withl, whereas that based on RSS! stays constait- R > + H(X]|Y). Note thatR has the unibits per sampled
Furthermore, Gaussian approximation is quite accuratn ecoefficientand a scaling of% is needed to convert tbits
when L is rather small. per frequency domain coefficiewhich secret key capacity is

Fig. 3. Slepian-Wolf Decoding

IV. SLEPIAN-WOLF LDPC CobDE

and the secret key capacity is given by:

CRrssr



based upon. e 200
We construct regular LDPC codes using a code generatir vy
engine [17] and we build irregular LDPC codes using densit
evolution [18]. To meet the requirement of 4-level quantiza
tion, we also design a non-binary LDPC codeGiF'(4). To
implement our 4-ary codes we combine two binary LDPC
codes and augment these two corresponding factor grap
by extra factor nodes that encode the mapping from 4-ai
variables to binary variables. The decoding algorithm run
belief propagation (BP) on this augmented factor graph.
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V. SIMULATION RESULTS %

In this section we provide simulation results and discussio o Ml
for the theoretical models proposed in previous sections. Index of Freauency Coeffcients

o

A. OFDM Simulation Results (a) Correlation Matrix of Freq Channel Coefficients

We first show the simulation result of an IEEE 802.11¢ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1600
channel. We simulate the frequency and sampled chanr 1}
coefficients and their correlation matrices. Then we numer 1400
cally compute the empirical secret key capacity betweeoeAli ]
and Bob based on our simulated frequency and time doma
channel coefficients under different channel environment.

1) Channel Coefficients Simulatiom@An 802.11a OFDM
channel with rich multipath typically has the following key
parameters [19]:

1200

1000

Index of Sampled Coefficients

No. of Tones (1) 52
Signal Bandwidth ) 20 MHz 400
Signal Duration T)) 3.2 us
Carrier Frequency Spacind\(f) || 312.5 kHz > " 6 s 0 2 ) 200
Center Carrier Frequency| 5.18 GHz Index of Sampled Coefficients
We considerN, = 300 multipath and assume th&2 (b) Correlation Matrix of Sampled Channel Coefficients

tones a”.have the samiéN' Iz, (3). For simplicity, we choose Fig. 4. OFDM Channel Coefficients Simulation. Note that sampled
the maximum delay Spreadmaw to be 650 ns so that the chénnél coefficients are decorrelated frdi frequéncy domain channel
degree of freedom (DOFL =~ [Ty W] = 13. We reduce coefficients using IDFT. Also note that sampled channel fiefits do not
the redundancy in thé/ = 52 frequency domain channelhave the same variance.

coefficients by using the IDFT transform to obtaid ap-
proximatelyindependent sampled channel coefficients. Note , ) ) .
that these coefficients will not have the same variance as w ?’e obtainable in actual operation of our system. Fig. 5
ideally assumed in Section 11I-B. We perform?® independent provides the s_e_cret key capacity drayvn from frequency domai
channel realizations and the sets of complex path gals channel coefficients where we plot it under= 1, 13 and 52

are independent across realizations. We construct th@uontverSfUSSN_Rf', i , i i
plots of correlation matrices of frequency domain channe| Simulation in Fig. 5 suggest that there is no single optimal

coefficients and sampled channel coefficients as shown QDM channel which has the best secret key capacity under

Fig. 4. The plot shows how frequency domain coefficients af@y SV £s: under lowSN 12, one would like to have fewer

correlated with each other and how sampled coefficients &fgdree of freedom; under highV R, one would like to have
correlated with each other. more degree of freedom.

2) Secret Key Capacity SimulatioliYe can characterize the . .
secret key capacity between Alice and Bob in two differerlﬁ' Slepian-Wolf Decoding
ways: one from the sampled channel coefficients using (12)There are basically two ways for an error correcting code
and one from the frequency domain channel coefficients. We reconcile their measured channel coefficients. If theth bo
calculate it from the frequency domain channel coefficientguantize their channel coefficients and obtain two quadtize
Recall that we have simulated the empirical correlatiorrixat sequences, we call thisard decodingprocess. On the other
of frequency domain coefficients, we can perform eigenvaltrand, if only Alice quantizes her channel coefficients ant Bo
decomposition (EVD) on this correlation matrix to decoatel keeps his unquantized coefficients, we call thidt decoding
the frequency domain coefficients. Note that this requines tprocess. In soft decoding process, the decoder has access to
actual statistics of frequency domain coefficients whichymaBob’s full unquantized channel coefficients which improves
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VI. CONCLUSION
We study channel randomness and propose a practical sys-

tem that can be used to generate secret keys based on channel

randomness. We investigate the secret key capacity shgred b
two end users and conclude that channel-coefficients-based
approach is superior to RSSls-based approach in the satse th
the former gives higher secret key capacity. The simulation
show that it is feasible to work on sampled channel coeffi-
cients. Regular and Irregular LDPC codes with the Slepian-
Wolf decoding structure are designed to reconcile the tveosus

107 i i i i i [1
-20 -10 0 10
SNR, (dB)

[2]
Fig. 5. Secret Key Capacity from Frequency Domain Channeaffidents

(3]
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[11]
Fig. 6. LDPC Performance
[12]

its decoding performance (Fig. 1). Note thdt= R in soft
decoding, an@d = {0, 1} in hard decoding if binary quantizer (13
is used ory = {0,1,2, 3} if 4-ary quantizer is used. [14]

We simulate the performance of our error correcting code
using the sampled channel coefficients we simulated in Sék
tion V-Al with L = 13. We connect our LDPC simulation 1]
with the secret key capacity in Section V-A2 by putting them
in the same plot. We plot the capacity whén= 13 and the [17]
performance of the binary and non-binary (4-ary) LDPC codeg
in Fig. 6.

The irregular LDPC codes are constructed using dens'%]
evolution technique [18]. We first note that our decoding
performance is improved by using soft decoding and it is
further improved by using irregular LDPC codes. Non-binary
LDPC further improves the performance and approaches the
capacity. LDPC codes with rate belaw25 are not simulated
as low code rate means large syndrome size which is less
secure.

to help them establish the same observation.
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